Important Largeur de fissure et flèche des éléments en béton de précontrainte Formules PDF

Formules Exemples avec unités

Liste de 40

Important Largeur de fissure et flèche des éléments en béton de précontrainte Formules

1) Calcul de la largeur de fissure Formules 🕝

1.1) Couverture efficace étant donné la distance la plus courte Formule 🕝

Exemple avec Unités

Formule

$$275.1 \, \text{mm} = \sqrt{\left(2.51 \, \text{cm} + \left(\frac{0.5 \, \text{m}}{2}\right)\right)^2 - \left(\frac{40 \, \text{A}}{2}\right)^2}$$

1.2) Couverture transparente minimale compte tenu de la largeur de la fissure Formule 🕝

Évaluer la formule (

$$C_{min} = acr - \frac{\left(\left(\frac{3 \cdot acr \cdot \varepsilon_{m}}{W_{cr}}\right) - 1\right) \cdot (h - x)}{2}$$

Exemple avec Unités

$$9.4799 \, \text{cm} = 2.51 \, \text{cm} - \frac{\left(\left(\frac{3 \cdot 2.51 \, \text{cm} \cdot 0.0005}{0.49 \, \text{mm}}\right) - 1\right) \cdot \left(20.1 \, \text{cm} - 50 \, \text{mm}\right)}{2}$$

1.3) Déformation moyenne au niveau sélectionné en fonction de la largeur de fissure Formule

Évaluer la formule (

$$\epsilon_{m} = \frac{W_{cr} \cdot \left(1 + \left(2 \cdot \frac{acr \cdot C_{min}}{h \cdot x}\right)\right)}{3 \cdot acr}$$

$$0.0005 = \frac{0.49 \,\mathrm{mm} \cdot \left(1 + \left(2 \cdot \frac{2.51 \,\mathrm{cm} - 9.48 \,\mathrm{cm}}{20.1 \,\mathrm{cm} - 50 \,\mathrm{mm}}\right)\right)}{3 \cdot 2.51 \,\mathrm{cm}}$$

1.4) Diamètre de la barre longitudinale étant donné la distance la plus courte Formule 🕝

Formule

Exemple avec Unités

Évaluer la formule 🕝

1.5) Espacement centre à centre étant donné la distance la plus courte Formule 🕝

$$s = 2 \cdot \sqrt{\left(acr + \left(\frac{D}{2}\right)\right)^2 - \left(d'^2\right)}$$

Évaluer la formule 🕝

Évaluer la formule

Évaluer la formule 🕝

Exemple avec Unités

$$54.1032 \, \text{cm} = 2 \cdot \sqrt{\left(2.51 \, \text{cm} + \left(\frac{0.5 \, \text{m}}{2}\right)\right)^2 - \left(50.01 \, \text{mm}^2\right)}$$

1.6) Largeur de fissure sur la surface de la section Formule 🕝

$$W_{cr} = \frac{3 \cdot acr \cdot \epsilon_m}{1 + \left(2 \cdot \frac{acr \cdot C_{min}}{h \cdot x}\right)} \quad \boxed{0.4901_{mm} = \frac{3 \cdot 2.51_{cm} \cdot 0.0005}{1 + \left(2 \cdot \frac{2.51_{cm} \cdot 9.48_{cm}}{20.1_{cm} \cdot 50_{mm}}\right)}}$$

Exemple avec Unités

$$= \frac{3 \cdot 2.51 \, \text{cm} \cdot 0.0005}{1 + \left(2 \cdot \frac{2.51 \, \text{cm} \cdot 9.48 \, \text{cm}}{20.1 \, \text{cm} \cdot 50 \, \text{mm}}\right)}$$

1.7) Profondeur de l'axe neutre compte tenu de la largeur de la fissure Formule 🕝

Formule

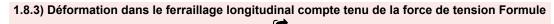
Exemple avec Unités

$$x = h - \left(2 \cdot \frac{\text{acr - C}_{min}}{3 \cdot \text{acr } \cdot \epsilon} - 1\right) \left[3052.0765 \, \text{mm} = 20.1 \, \text{cm} - \left(2 \cdot \frac{2.51 \, \text{cm} - 9.48 \, \text{cm}}{3 \cdot 2.51 \, \text{cm} \cdot 1.0001} - 1\right) \right]$$

1.8) Évaluation de la déformation moyenne et de la profondeur de l'axe neutre Formules 🕝

1.8.1) Déformation au niveau sélectionné étant donné la déformation moyenne sous tension

Formule C


Évaluer la formule 🕝

Évaluer la formule 🕝

$$\boxed{ \epsilon_{1} = \epsilon_{m} + \frac{W_{cr} \cdot \left(h_{Crack} - x \right) \cdot \left(D_{CC} - x \right)}{3 \cdot E_{s} \cdot A_{s} \cdot \left(L_{eff} - x \right)} }$$

$$0.0005 = 0.0005 + \frac{0.49 \,\mathrm{mm} \cdot (12.01 \,\mathrm{m} - 50 \,\mathrm{mm}) \cdot (4.5 \,\mathrm{m} - 50 \,\mathrm{mm})}{3 \cdot 200000 \,\mathrm{MPa} \cdot 500 \,\mathrm{mm}^2 \cdot (50.25 \,\mathrm{m} - 50 \,\mathrm{mm})}$$

1.8.2) Déformation dans l'acier précontraint étant donné la force de tension Formule 🕝

Évaluer la formule (

Formule Exemple avec Unités $\epsilon_S = \frac{N_u}{A_s \cdot Es} \qquad 10 = \frac{1000 \, \text{n}}{500 \, \text{mm}^2 \, \cdot 200000}$

1.8.4) Déformation étant donné Couple Force de section transversale Formule 🕝 Évaluer la formule

 $\epsilon_{c} = \frac{C}{0.5 \cdot E_{c} \cdot x \cdot W_{cr}} \left| \quad 14.5587 = \frac{0.028 \, \text{kN}}{0.5 \cdot 0.157 \, \text{Mpa} \cdot 50 \, \text{mm} \cdot 0.49 \, \text{mm}} \right|$

1.8.5) Déformation moyenne sous tension Formule C

 $\varepsilon_{\rm m} = \varepsilon_1 - \frac{W_{\rm cr} \cdot \left(h_{\rm Crack} - x\right) \cdot \left(D_{\rm CC} - x\right)}{3 \cdot E_{\rm c} \cdot A_{\rm c} \cdot \left(L_{\rm ccc} - x\right)}$

Exemple avec Unités

 $0.0005 = 0.000514 - \frac{0.49\,\text{mm} \cdot \left(\ 12.01\,\text{m} \ -\ 50\,\text{mm}\ \right) \cdot \left(\ 4.5\,\text{m} \ -\ 50\,\text{mm}\ \right)}{3 \cdot 200000\,\text{MPa} \cdot 500\,\text{mm}^2 \cdot \left(\ 50.25\,\text{m} \ -\ 50\,\text{mm}\ \right)}$

1.8.6) Force de compression pour section précontrainte Formule [7]

Évaluer la formule 🦳

Évaluer la formule

1.8.7) Force de couple de la section transversale Formule 🕝

Formule

Exemple avec Unités $C = 0.5 \cdot E_{c} \cdot \epsilon_{c} \cdot x \cdot W_{cr} \quad | \quad 0.0033 \, \text{kn} = 0.5 \cdot 0.157 \, \text{MPa} \cdot 1.69 \cdot 50 \, \text{mm} \cdot 0.49 \, \text{mm}$ Évaluer la formule (

Évaluer la formule 🕝

1.8.8) Hauteur de la largeur des fissures au niveau du soffite compte tenu de la déformation moyenne Formule C

 $h_{Crack} = \left(\frac{\left(\epsilon_1 - \epsilon_m\right) \cdot \left(3 \cdot E_s \cdot A_s \cdot \left(d - x\right)\right)}{W_{ar} \cdot \left(D_{CC} - x\right)}\right) + x$

$$67415.7803 \,\mathrm{m} \,= \left(\frac{\left(\,\, 0.000514 \,\,\text{--}\,\, 0.0005 \,\,\right) \,\cdot\, \left(\,\,3 \,\cdot\, 200000 \,\,\mathrm{MPa} \,\,\cdot\, 500 \,\,\mathrm{mm}^2 \,\,\cdot\, \left(\,\,85 \,\,\mathrm{mm} \,\,\text{--}\,\, 50 \,\,\mathrm{mm} \,\,\right) \,\,\right)}{0.49 \,\mathrm{mm} \,\,\cdot\, \left(\,\,4.5 \,\,\mathrm{m} \,\,\text{--}\,\, 50 \,\,\mathrm{mm} \,\,\right)} \right) + \,50 \,\mathrm{mm}$$

Formule Exemple avec Unités
$$W_{cr} = \frac{C}{0.5 \cdot E_{c} \cdot \epsilon \cdot x} \qquad 7.133 \, \text{mm} = \frac{0.028 \, \text{kN}}{0.5 \cdot 0.157 \, \text{MPa} \cdot 1.0001 \cdot 50 \, \text{mm}}$$

Évaluer la formule 🕝

1.8.10) Module d'élasticité de l'acier précontraint compte tenu de la force de compression Formule

Évaluer la formule (

1.8.11) Module d'élasticité du béton compte tenu de la force de couple de la section transversale Formule 🕝

Exemple avec Unités

 $E_{c} = \frac{C}{0.5 \cdot \epsilon_{c} \cdot x \cdot W_{cr}} \left| 1.3525 \,_{MPa} \right| = \frac{0.028 \,_{kN}}{0.5 \cdot 1.69 \cdot 50 \,_{mm} \cdot 0.49 \,_{mm}}$

1.8.12) Profondeur de l'axe neutre étant donné la force de couple de la section transversale

Formule

Exemple avec Unités

Évaluer la formule (

$$x = \frac{C}{0.5 \cdot E_c \cdot \epsilon_c \cdot W_{cr}} \qquad \boxed{ 430.7305 \, \text{mm} = \frac{0.028 \, \text{kN}}{0.5 \cdot 0.157 \, \text{MPa} \, \cdot 1.69 \cdot 0.49 \, \text{mm}} }$$

1.8.13) Surface de l'acier de précontrainte compte tenu de la force de tension Formule 🕝

Formule Exemple avec Unités
$$As = \frac{N_u}{E_p \cdot \epsilon} \qquad 26.3132 \, \text{mm}^2 = \frac{1000 \, \text{n}}{38 \, \text{kg/cm}^3 \cdot 1.0001}$$

Évaluer la formule 🕝

2) Déviation Formules 🕝

2.1) Déviation à court terme lors du transfert Formule 🕝

Formule

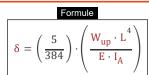
Évaluer la formule

2.2) Déviation due au poids propre donné Déviation à court terme au transfert Formule 🗂

Évaluer la formule 🕝

Formules PDF...

 $\Delta sw = \Delta po + \Delta st \mid \int scm = 2.5 cm + 2.50 cm$


2.3) Flèche due à la force de précontrainte Formules

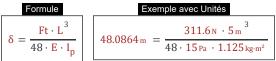
2.3.1) Déflexion due à la précontrainte étant donné le tendon à double harpe Formule 🕝

$$\delta = \frac{a \cdot \left(a^2\right) \cdot \text{Ft} \cdot L^3}{24 \cdot E \cdot I_p} \qquad \text{Exemple avec Unités}$$

$$49.2405 \, \text{m} = \frac{0.8 \cdot \left(0.8^2\right) \cdot 311.6 \, \text{N} \cdot 5 \, \text{m}}{24 \cdot 15 \, \text{Pa} \cdot 1.125 \, \text{kg·m}^2}$$

Évaluer la formule 🦳

2.3.2) Déflexion due à la précontrainte pour le tendon parabolique Formule 🕝


$$\delta = \left(\frac{5}{384}\right) \cdot \left(\frac{W_{up} \cdot L^4}{E \cdot I_A}\right) \boxed{ 48.0857_m = \left(\frac{5}{384}\right) \cdot \left(\frac{0.842 \, \text{kN/m} \cdot 5_m}{15 \, \text{Pa} \cdot 9.5_m^4}\right) }$$

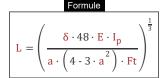
Évaluer la formule

Évaluer la formule (

2.3.3) Déflexion due à la précontrainte pour tendon à harpe simple Formule 🕝

2.3.4) Flèche due à la force de précontrainte avant les pertes lors de la flèche à court terme lors du transfert Formule

Évaluer la formule 🦳


2.3.5) Longueur de la portée compte tenu de la déflexion due à la précontrainte pour les tendons à harpe simple Formule

Formule
$$L = \left(\frac{\delta \cdot 48 \cdot E \cdot I_p}{Ft}\right)^{\frac{1}{3}}$$

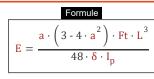
$$L = \left(\frac{\delta \cdot 48 \cdot E \cdot I_p}{\text{Ft}}\right)^{\frac{1}{3}} \\ \boxed{ 5.0005_m = \left(\frac{48.1_m \cdot 48 \cdot 15_{Pa} \cdot 1.125_{kg \cdot m^2}}{311.6_{N}}\right)^{\frac{1}{3}} }$$

Évaluer la formule 🕝

2.3.6) Longueur de travée compte tenu de la déflexion due à la précontrainte pour le tendon à double harpe Formule C

Formule Exemple avec Unités
$$L = \left(\frac{\delta \cdot 48 \cdot E \cdot I_{p}}{a \cdot \left(4 \cdot 3 \cdot a^{2}\right) \cdot Ft}\right)^{\frac{1}{3}}$$

$$4.2198_{m} = \left(\frac{48.1_{m} \cdot 48 \cdot 15_{Pa} \cdot 1.125_{kg \cdot m^{2}}}{0.8 \cdot \left(4 \cdot 3 \cdot 0.8^{2}\right) \cdot 311.6_{N}}\right)^{\frac{1}{3}}$$


Évaluer la formule 🕝

2.3.7) Module de Young soumis à une déviation due à la précontrainte du tendon parabolique Formule

Formule
$$E = \left(\frac{5}{384}\right) \cdot \left(\frac{W_{up} \cdot L^4}{\delta \cdot I_A}\right)$$

Formule Exemple avec Unités
$$E = \left(\frac{5}{384}\right) \cdot \left(\frac{W_{up} \cdot L^4}{\delta \cdot I_A}\right) \boxed{ 14.9955 \, P_a = \left(\frac{5}{384}\right) \cdot \left(\frac{0.842 \, \text{kN/m} \cdot 5 \, \text{m}^4}{48.1 \, \text{m} \cdot 9.5 \, \text{m}^4}\right) }$$

2.3.8) Module de Young soumis à une déviation en raison de la précontrainte du tendon à double harpe Formule 🕝

Formule Exemple avec Unités
$$E = \frac{a \cdot \left(3 - 4 \cdot a^2\right) \cdot Ft \cdot L^3}{48 \cdot \delta \cdot I_p} \qquad 5.2785 \, Pa = \frac{0.8 \cdot \left(3 - 4 \cdot 0.8^2\right) \cdot 311.6 \, \text{N} \cdot 5 \, \text{m}^3}{48 \cdot 48.1 \, \text{m} \cdot 1.125 \, \text{kg·m}^2}$$

Évaluer la formule 🦳

Évaluer la formule (

Évaluer la formule (

Évaluer la formule 🕝

Évaluer la formule 🕝

Évaluer la formule 🕝

2.3.9) Module de Young soumis à une déviation en raison de la précontrainte pour un tendon à harpe unique Formule

$$E = \frac{Ft \cdot L^3}{48 \cdot \delta \cdot I_p}$$

Formule Exemple avec Unités
$$E = \frac{Ft \cdot L^3}{48 \cdot \delta \cdot I_p} \qquad 14.9958 \, \text{Pa} = \frac{311.6 \, \text{N} \cdot 5 \, \text{m}^3}{48 \cdot 48.1 \, \text{m} \cdot 1.125 \, \text{kg·m}^2}$$

2.3.10) Moment d'inertie de déflexion dû à la précontrainte dans un tendon à double harpe Formule

Formule
$$I_{p} = \frac{a \cdot \left(a^{2}\right) \cdot Ft \cdot L^{3}}{48 \cdot e \cdot \delta}$$

Formule Exemple avec Unités
$$I_p = \frac{a \cdot \left(a^2\right) \cdot \text{Ft} \cdot L^3}{48 \cdot e \cdot \delta} \quad \boxed{ 0.1728 \, \text{kg·m}^2 = \frac{0.8 \cdot \left(0.8^2\right) \cdot 311.6 \, \text{N} \cdot 5 \, \text{m}^3}{48 \cdot 50 \, \text{Pa} \cdot 48.1 \, \text{m}} }$$

2.3.11) Moment d'inertie pour la déflexion due à la précontrainte du câble parabolique Formule

Formule
$$I_{p} = \left(\frac{5}{384}\right) \cdot \left(\frac{W_{up} \cdot L^{4}}{e}\right)$$

Formule Exemple avec Unités
$$I_p = \left(\frac{5}{384}\right) \cdot \left(\frac{W_{up} \cdot L^4}{e}\right) \boxed{ 137.0443 \, \text{kg·m}^2 = \left(\frac{5}{384}\right) \cdot \left(\frac{0.842 \, \text{kN/m} \cdot 5 \, \text{m}^4}{50 \, \text{Pa}}\right) }$$

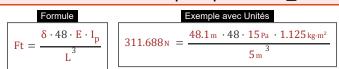
2.3.12) Moment d'inertie pour la déflexion due à la précontrainte du tendon à harpe unique Formule

$$I_p = \frac{Ft \cdot L^3}{48 \cdot e \cdot \delta} \qquad \boxed{ \begin{array}{c} \text{Exemple avec Unit\'es} \\ \\ 0.3374 \, \mathrm{kg \cdot m^2} \end{array} = \frac{311.6 \, \mathrm{N} \cdot 5 \, \mathrm{m}^3}{48 \cdot 50 \, \mathrm{Pa} \cdot 48.1 \, \mathrm{m}} }$$

2.3.13) Poussée de soulèvement donnée par la déviation due à la précontrainte du tendon à double harpe Formule

$$\mathsf{Ft} = \frac{\delta \cdot 24 \cdot \mathsf{E} \cdot \mathsf{I}_{\mathsf{p}}}{a \cdot \left(3 \cdot 4 \cdot \mathsf{a}^{2}\right) \cdot \mathsf{L}^{3}}$$

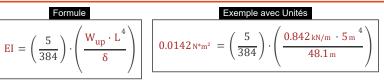
Évaluer la formule 🦳


Évaluer la formule (

Évaluer la formule 🦳

Évaluer la formule (

Évaluer la formule (


2.3.14) Poussée de soulèvement donnée par la déviation due à la précontrainte pour le tendon à harpe simple Formule 🕝

2.3.15) Poussée de soulèvement lors de la déviation due à la précontrainte pour le tendon parabolique Formule

$$W_{up} = \frac{\delta \cdot 384 \cdot E \cdot I_{A}}{5 \cdot L^{4}} \qquad 0.8423 \, \text{kN/m} \ = \frac{48.1 \, \text{m} \cdot 384 \cdot 15 \, \text{Pa} \cdot 9.5 \, \text{m}^{4}}{5 \cdot 5 \, \text{m}^{4}}$$

2.3.16) Rigidité en flexion compte tenu de la déflexion due à la précontrainte pour le tendon parabolique Formule 🕝

2.3.17) Rigidité en flexion compte tenu de la déflexion due à la précontrainte pour les tendons à double harpe Formule Évaluer la formule 🦳

Formule Exemple avec Unités
$$EI = \frac{a \cdot \left(a^2\right) \cdot Ft \cdot L^3}{24 \cdot \delta} \quad 17.2751 \, \text{N*m²} = \frac{0.8 \cdot \left(0.8^2\right) \cdot 311.6 \, \text{N} \cdot 5 \, \text{m}^3}{24 \cdot 48.1 \, \text{m}}$$

2.3.18) Rigidité en flexion compte tenu de la déflexion due à la précontrainte pour les tendons à harpe simple Formule

Variables utilisées dans la liste de Largeur de fissure et flèche des éléments en béton de précontrainte Formules ci-dessus

- a Partie de la longueur de la travée
- A_s Zone de renforcement (Millimètre carré)
- acr Distance la plus courte (Centimètre)
- As Domaine de l'acier de précontrainte (Millimètre carré)
- **C** Force de couple (Kilonewton)
- C_c Compression totale sur béton (Newton)
- C_{min} Couverture transparente minimale (Centimètre)
- d Profondeur effective de renforcement (Millimètre)
- d' Couverture efficace (Millimètre)
- **D** Diamètre de la barre longitudinale (Mètre)
- D_{CC} Distance entre la compression et la largeur de la fissure (Mètre)
- e Module d'élasticité (Pascal)
- E Module d'Young (Pascal)
- E_c Module d'élasticité du béton (Mégapascal)
- E_p Module de Young précontraint (Kilogramme par centimètre cube)
- E_s Module d'élasticité des armatures en acier (Mégapascal)
- **El** Rigidité à la flexion (Newton mètre carré)
- Es Module d'élasticité de l'acier
- **Ft** Force de poussée (Newton)
- h Profondeur totale (Centimètre)
- h_{Crack} Hauteur de fissure (Mètre)
- IA Deuxième moment de surface (Compteur ^ 4)
- I_p Moment d'inertie en précontrainte (Kilogramme Mètre Carré)
- L Longueur de travée (Mètre)
- Leff Longueur efficace (Mètre)
- N_{II} Force de tension (Newton)

Constantes, fonctions, mesures utilisées dans la liste des Largeur de fissure et flèche des éléments en béton de précontrainte Formules cidessus

- Les fonctions: sqrt, sqrt(Number)
 Une fonction racine carrée est une fonction qui prend un nombre non négatif comme entrée et renvoie la racine carrée du nombre d'entrée donné.
- La mesure: Longueur in Millimètre (mm), Centimètre (cm), Mètre (m), Angstrom (A)
 Longueur Conversion d'unité
- La mesure: Zone in Millimètre carré (mm²)
 Zone Conversion d'unité
- La mesure: Pression in Mégapascal (MPa), Pascal (Pa)

Pression Conversion d'unité

- La mesure: Force in Newton (N), Kilonewton (kN)
- Force Conversion d'unité
 La mesure: Tension superficielle in Kilonewton
 - par mètre (kN/m)

 Tension superficielle Conversion d'unité
- La mesure: Densité in Kilogramme par centimètre cube (kg/cm³)
 Densité Conversion d'unité
- La mesure: Moment d'inertie in Kilogramme Mètre Carré (kg·m²)
 Moment d'inertie Conversion d'unité
- La mesure: Deuxième moment de la zone in Compteur ^ 4 (m⁴)
 Deuxième moment de la zone Conversion d'unité
- La mesure: Rigidité à la flexion in Newton mètre carré (N*m²)

Rigidité à la flexion Conversion d'unité

- S Espacement centre à centre (Centimètre)
- W_{cr} Largeur de fissure (Millimètre)
- W_{up} Poussée vers le haut (Kilonewton par mètre)
- **X** Profondeur de l'axe neutre (Millimètre)
- **Z** Distance centre à centre (Angstrom)
- δ Déflexion due aux moments sur le barragevoûte (Mètre)
- Apo Flèche due à la force de précontrainte (Centimètre)
- Δst Déviation à court terme (Centimètre)
- Δsw Déflexion due au poids propre (Centimètre)
- ε Souche
- ε₁ Souche au niveau sélectionné
- ε_c Déformation dans le béton
- ε_m Souche moyenne
- ES Déformation dans le renforcement longitudinal

Téléchargez d'autres PDF Important Béton précontraint

- Important Analyse des contraintes de limportant Principes généraux du béton précontrainte et de flexion Formules précontraint Formules
- Important Largeur de fissure et flèche des éléments en béton de précontrainte Formules remainder précontrainte pr

Essayez nos calculatrices visuelles uniques

- N Pourcentage du nombre
- Calculateur PPCM

• 🌇 Fraction simple 🕝

Veuillez PARTAGER ce PDF avec quelqu'un qui en a besoin!

Ce PDF peut être téléchargé dans ces langues

English Spanish French German Russian Italian Portuguese Polish Dutch

7/8/2024 | 11:21:39 AM UTC