Important Strain Energy Formulas PDF

4) Eccentricity for Solid Circular Sector to Maintain Stress as Wholly Compressive Formula

Formula	Example with Units
φ' - Φ	05 760 mm
$e - \frac{1}{8}$	95 mm - <u>8</u>

5) Eccentricity in Column for Hollow Circular Section when Stress at Extreme Fibre is Zero Formula

Formula	Example with Units
$D^2 + d_i^2$	1281.25 mm -4000 mm ² + 5000 mm ²
$e' = \frac{1}{8 \cdot D}$	8 · 4000 mm

6) Eccentricity to Maintain Stress as Wholly Compressive Formula 🕝

Formula	Example with Units	Evaluate Formula 🔂
$e' = \frac{Z}{A}$	$200\text{mm}\ = \frac{1120000\text{mm}^3}{5600\text{mm}^2}$	

8.3) Length over which Deformation takes place given Strain Energy in Torsion Formula 🕝

Formula	Example with Units	
$L = \frac{2 \cdot U \cdot J \cdot G_{Torsion}}{T^2}$	$3003.7289_{mm} = \frac{2 \cdot 136.08_{N^*m} \cdot 4.1e \cdot 3_{m^4} \cdot 40_{GPa}}{121.9_{kN^*m}}^2$	

8.4) Length over which Deformation takes place using Strain Energy Formula 🕝

8.6) Moment of Inertia using Strain Energy Formula 🕝

Evaluate Formula

9) Strain Energy stored by the Member Formulas (*) 9.1) Area of Member given Strain Energy Stored by Member Formula (*) Formula $A = \frac{2 \cdot E \cdot U_{member}}{L \cdot \sigma^2}$ $5599.9995 \text{ mm}^2 = \frac{2 \cdot 20000 \text{ MPa} \cdot 301.2107 \text{ N*m}}{3000 \text{ mm} \cdot 26.78 \text{ MPa}^2}$

9.3) Modulus of Elasticity of Member given Strain Energy Stored by Member Formula 🕝

9.5) Stress of Member given Strain Energy Stored by Member Formula 🕝

10) Strain Energy stored per unit Volume Formulas 🕝

10.1) Modulus of Elasticity of Member with known Strain Energy Stored per Unit Volume

Formula 🛃

Evaluate Formula 🦳

Variables used in list of Strain Energy Formulas above

- A Area of Cross-Section (Square Millimeter)
- D Outer Depth (Millimeter)
- d_i Inner Depth (Millimeter)
- e' Eccentricity of Load (Millimeter)
- E Young's Modulus (Megapascal)
- Grosion Modulus of Rigidity (Gigapascal)
- h Height of Crack (Millimeter)
- Area Moment of Inertia (Meter4)
- J Polar Moment of Inertia (Meter⁴)
- L Length of Member (Millimeter)
- M Bending Moment (Kilonewton Meter)
- SEV Shear Resilience (Joule per Cubic Meter)
- t Dam Thickness (Millimeter)
- T Torque SOM (Kilonewton Meter)
- U Strain Energy (Newton Meter)
- U_{density} Strain Energy Density (Joule per Cubic Meter)
- Umember Strain Energy stored by Member (Newton Meter)
- V Shear Force (Kilonewton)
- WApplied load Applied Load (Kilonewton)
- Z Section Modulus for Eccentric Load on Beam (*Cubic Millimeter*)
- A Shear Deformation
- ε_L Lateral Strain
- **0** Angle of Twist (Degree)
- σ Direct Stress (Megapascal)
- T Shear Stress (Megapascal)
- **Φ** Diameter of Circular Shaft (Millimeter)

Constants, Functions, Measurements used in list of Strain Energy Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- Functions: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Volume in Cubic Millimeter (mm³) Volume Unit Conversion
- Measurement: Area in Square Millimeter (mm²) Area Unit Conversion
- Measurement: Pressure in Gigapascal (GPa)
 Pressure Unit Conversion
- Measurement: Force in Kilonewton (kN)
 Force Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Torque in Kilonewton Meter (kN*m)

Torque Unit Conversion 🕝

 Measurement: Moment of Force in Kilonewton Meter (kN*m) Moment of Force Unit Conversion

 Measurement: Energy Density in Joule per Cubic Meter (J/m³)

Energy Density Unit Conversion 🕝

 Measurement: Second Moment of Area in Meter⁴ (m⁴)

Second Moment of Area Unit Conversion 🕝

Measurement: Stress in Megapascal (MPa)
 Stress Unit Conversion

Download other Important Strength of Materials PDFs

Important Beam Moments Formulas • Important Slope and Deflection
Important Bending Stress Formulas • Formulas • Important Strain Energy Formulas • Important Stress and Strain
Important Principal Stress Formulas • Formulas • Important Thermal Stress Formulas • Important Torsion Formulas • Important * Important

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/8/2024 | 9:51:17 AM UTC

Simple fraction