Important Time Required to Empty a Reservoir with Rectangular Weir Formulas PDF

Formulas Examples with Units

List of 19 Important Time Required to Empty a Reservoir with Rectangular Weir Formulas

Evaluate Formula

Evaluate Formula (

1) Bazins Constant given Time Required to Lower Liquid Surface Formula 🕝

Example with Units

$$0.6021 = \left(\frac{2 \cdot 13 \text{ m}^2}{1.25 \text{ s} \cdot \sqrt{2 \cdot 9.8 \text{ m/s}^2}}\right) \cdot \left(\frac{1}{\sqrt{5.1 \text{ m}}} - \frac{1}{\sqrt{10.1 \text{ m}}}\right)$$

2) Coefficient of Discharge for Time Required to Lower Liquid Surface Formula 🕝

Formula

$$C_{d} = \left(\frac{2 \cdot A_{R}}{\left(\frac{2}{3}\right) \cdot \Delta t \cdot \sqrt{2 \cdot g} \cdot L_{w}}\right) \cdot \left(\frac{1}{\sqrt{h_{2}}} - \frac{1}{\sqrt{H_{Upstream}}}\right)$$

Example with Units

$$0.301 = \left(\frac{2 \cdot 13 \,\mathrm{m}^2}{\left(\frac{2}{3}\right) \cdot 1.25 \,\mathrm{s} \cdot \sqrt{2 \cdot 9.8 \,\mathrm{m/s^2}} \cdot 3 \,\mathrm{m}}\right) \cdot \left(\frac{1}{\sqrt{5.1 \,\mathrm{m}}} - \frac{1}{\sqrt{10.1 \,\mathrm{m}}}\right)$$

3) Coefficient of Discharge given Time required to Lower Liquid for Triangular Notch Formula

Evaluate Formula

4) Cross Sectional Area given Time required to Lower Liquid for Triangular Notch Formula 🕝

5) Cross Sectional Area given Time required to Lower Liquid Surface Formula 🕝 👘

6) Cross Sectional Area given time required to Lower Liquid Surface using Bazins Formula Formula 🕝

7) Head given Time Required to Lower Liquid Surface using Francis Formula Formula 🕝

Example with Units

8) Head1 given Time Required to Lower Liquid for Triangular Notch Formula 🕝

Formula $H_{\text{Upstream}} = \left(\frac{1}{\left(\frac{1}{b^{-\frac{3}{2}}}\right) - \left(\frac{\Delta t \cdot \left(\frac{B}{15}\right) \cdot C_{d} \cdot \sqrt{2 \cdot g} \cdot \tan\left(\frac{\theta}{2}\right)}{(2) - 4}\right)} \right)$

Example with Units

Evaluate Formula 🕝

Evaluate Formula

9) Head1 given Time Required to Lower Liquid Surface Formula 🕝

Evaluate Formula 🦳

Evaluate Formula

Formula

Example with Units

$$38.174 \text{ m} = \left(\left(\frac{1}{\left(\frac{1}{\sqrt{5.1 \text{ m}}}\right) - \frac{1.25 \text{ s} \cdot \left(\frac{2}{3}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \text{ m/s}^2} \cdot 3 \text{ m}}{2 \cdot 13 \text{ m}^2}} \right)^2 \right)$$

10) Head1 given Time Required to Lower Liquid Surface using Bazins Formula Formula 🕝

11) Head2 given Time Required to Lower Liquid for Triangular Notch Formula

Evaluate Formula 🦳

Evaluate Formula 🦳

12) Head2 given Time Required to Lower Liquid Surface Formula 🕝

Example with Units

13) Head2 given Time Required to Lower Liquid Surface using Bazins Formula Formula 🕝

15) Length of Crest given Time Required to Lower Liquid Surface using Francis Formula Formula

Evaluate Formula

Example with Units $2.4447_{\rm m} = \left(\left(\frac{2 \cdot 13_{\rm m^2}}{1.84 \cdot 7.4_{\rm s}} \right) \cdot \left(\frac{1}{\sqrt{5.1_{\rm m}}} - \frac{1}{\sqrt{10.1_{\rm m}}} \right) \right) + \left(0.1 \cdot 4 \cdot 5.5_{\rm m} \right)$

16) Time Required to Lower Liquid Surface Formula

Evaluate Formula

Evaluate Formula

Evaluate Formula

$$\Delta t = \left(\frac{2 \cdot A_{R}}{\left(\frac{2}{3}\right) \cdot C_{d} \cdot \sqrt{2 \cdot g} \cdot L_{w}}\right) \cdot \left(\frac{1}{\sqrt{h_{2}}} - \frac{1}{\sqrt{H_{Upstream}}}\right)$$

Example with Units
$$0.5701_{s} = \left(\frac{2 \cdot 13_{m^{2}}}{\left(\frac{2}{3}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8_{m/s^{2}} \cdot 3_{m}}}\right) \cdot \left(\frac{1}{\sqrt{5.1_{m}}} - \frac{1}{\sqrt{10.1_{m}}}\right)$$

17) Time Required to Lower Liquid Surface for Triangular Notch Formula 🕝

$$\Delta t = \left(\frac{\left(\frac{2}{3}\right) \cdot A_{R}}{\left(\frac{8}{15}\right) \cdot C_{d} \cdot \sqrt{2 \cdot g} \cdot \tan\left(\frac{\theta}{2}\right)}\right) \cdot \left(\left(\frac{1}{h_{2}^{\frac{3}{2}}}\right) \cdot \left(\frac{1}{H_{Upstream}^{\frac{3}{2}}}\right)\right)$$

Example with Units

$$1.1555_{s} = \left(\frac{\left(\frac{2}{3}\right) \cdot 13_{m^{2}}}{\left(\frac{8}{15}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8_{m/s^{2}}} \cdot \tan\left(\frac{30^{\circ}}{2}\right)}\right) \cdot \left(\left(\frac{1}{5.1_{m}}\right) - \left(\frac{1}{10.1_{m}}\right)\right)$$

18) Time Required to Lower Liquid Surface using Bazins Formula Formula 🕝

Formula $\Delta t = \left(\frac{2 \cdot A_R}{m \cdot \sqrt{2 \cdot g}}\right) \cdot \left(\frac{1}{\sqrt{h_2}} - \frac{1}{\sqrt{H_{Upstream}}}\right)$ Example with Units $1.8491_s = \left(\frac{2 \cdot 13_{m^2}}{0.407 \cdot \sqrt{2 \cdot 9.8_{m/s^2}}}\right) \cdot \left(\frac{1}{\sqrt{5.1_m}} - \frac{1}{\sqrt{10.1_m}}\right)$

19) Time Required to Lower Liquid Surface using Francis Formula Formula 🕝

Evaluate Formula

Formula

$$t_{F} = \left(\frac{2 \cdot A_{R}}{1.84 \cdot \left(\ L_{w} - \left(\ 0.1 \cdot n \cdot H_{Avg} \right) \right)} \right) \cdot \left(\frac{1}{\sqrt{h_{2}}} - \frac{1}{\sqrt{H_{Upstream}}} \right)$$

Example with Units $2.2635_{s} = \left(\frac{2 \cdot 13_{m^{2}}}{1.84 \cdot (3_{m} - (0.1 \cdot 4 \cdot 5.5_{m}))}\right) \cdot \left(\frac{1}{\sqrt{5.1_{m}}} - \frac{1}{\sqrt{10.1_{m}}}\right)$

Variables used in list of Time Required to Empty a Reservoir with Rectangular Weir Formulas above

- A_R Cross-Sectional Area of Reservoir (Square Meter)
- C_d Coefficient of Discharge
- **g** Acceleration due to Gravity (Meter per Square Second)
- h₂ Head on Downstream of Weir (Meter)
- H_{Avg} Average Height of Downstream and Upstream (*Meter*)
- Hupstream Head on Upstream of Weir (Meter)
- L_w Length of Weir Crest (Meter)
- m Bazins Coefficient
- **n** Number of End Contraction
- t_F Time Interval for Francis (Second)
- Δt Time Interval (Second)
- θ Theta (Degree)

Constants, Functions, Measurements used in list of Time Required to Empty a Reservoir with Rectangular Weir Formulas above

- Functions: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Functions: tan, tan(Angle) The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²)

Acceleration Unit Conversion 🕝

• Measurement: Angle in Degree (°) Angle Unit Conversion

Download other Important Flow Over Notches and Weirs PDFs

- Important Broad Crested Weir Formulas (*)
- Important Flow Over a Trapizoidal and Formulas C
 Triangular Weir or Notch Formulas C
 Important Time Required to Empty a
- Important Flow Over Rectangular Sharp Crested Weir or Notch

Formulas 🕝

- Important Submerged Weirs
 Formulas C
- Important Time Required to Empty a Reservoir with Rectangular Weir Formulas (

Try our Unique Visual Calculators

Percentage share C

Main and the second sec

- HCF of two numbers
- Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

9/23/2024 | 11:36:37 AM UTC

