Important Stress and Strain Formulas PDF

2.10) Modulus of Elasticity using Elongation of Circular Tapering Rod Formula

 $2187.5\,\text{mm}^2\ =\ 1750\,\text{kN}\ \cdot\ \frac{1}{6\cdot0.020\,\text{m}\ \cdot\ 20000\,\text{MPa}}$

$$\delta l = \gamma_{Rod} \cdot L \cdot \frac{L}{E \cdot 2} \qquad 0.0011 \text{m} = 4930.96 \text{ kN/m}^3 \cdot 3 \text{m} \cdot \frac{3 \text{m}}{20000 \text{ Mpa} \cdot 2}$$

 $A = W_{Load} \cdot \frac{L}{6 \cdot \delta l \cdot}$

3.3) Elongation due to Self Weight in Prismatic Bar using Applied Load Formula

FormulaExample with UnitsEvaluate Formula
$$\delta l = W_{Load} \cdot \frac{L}{2 \cdot A \cdot E}$$
 $0.0234_{m} = 1750_{kN} \cdot \frac{3_{m}}{2 \cdot 5600_{mm^{2}} \cdot 20000_{MPa}}$

3.4) Elongation of Truncated Conical Rod due to Self Weight Formula 🕝

$$\delta l = \frac{\left(\gamma_{Rod} \cdot l^{2}\right) \cdot \left(d_{1} + d_{2}\right)}{6 \cdot E \cdot \left(d_{1} - d_{2}\right)}$$

Example with Units

$$0.02 \text{ m} = \frac{\left(4930.96 \text{ kN/m}^3 \cdot 7.8 \text{ m}^2\right) \cdot \left(0.045 \text{ m} + 0.035 \text{ m}\right)}{6 \cdot 20000 \text{ MPa} \cdot \left(0.045 \text{ m} - 0.035 \text{ m}\right)}$$

3.5) Length of Bar using Elongation due to Self Weight in Prismatic bar Formula

-	Formula	Example with Units	
	$L = \sqrt{\frac{\delta l}{\frac{\gamma_{Rod}}{E \cdot 2}}}$	$12.7374 \mathrm{m} = \sqrt{\frac{0.0}{\frac{4930}{2000}}}$	020 m 0.96 кN/m ³ 00 мРа · 2

Evaluate Formula

3.6) Length of Bar using its Uniform Strength Formula 🕝

3.7) Length of Rod of Truncated Conical Section Formula 🕝

3.8) Modulus of Elasticity of Bar with known elongation of Truncated Conical Rod due to Self Weight Formula

3.9) Modulus of Elasticity of Rod using Extension of Truncated Conical Rod due to Self Weight Formula

3.10) Specific weight of Truncated Conical Rod using its elongation due to Self Weight Formula

4) Elongation of Tapering Bar due to Self Weight Formulas 🕝

YRod

4.2) Elongation of Conical Bar due to Self Weight with known Cross-sectional area Formula 🕝

4.3) Length of Bar given Elongation of Conical Bar due to Self Weight Formula 🕝 👘

4.4) Length of Bar using Elongation of Conical Bar with Cross-sectional area Formula 🕝

4.5) Length of Circular Tapering Rod when deflection due to load Formula 🕝

4.6) Length of Prismatic Rod given Elongation due to Self Weight in Uniform Bar Formula Formula $\begin{bmatrix} Formula \\ L = \frac{\delta l}{\frac{W_{Load}}{2 \cdot A \cdot E}} \end{bmatrix}$ Example with Units $\begin{bmatrix} 2.56 m = \frac{0.020 m}{\frac{1750 kN}{2 \cdot 5600 mm^2 \cdot 20000 MPa}} \end{bmatrix}$ 4.7) Load on Conical Bar with known Elongation due to Self Weight Formula (*) $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}} \end{bmatrix}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}} \end{bmatrix}$ 4.8) Load on Prismatic Bar with known Elongation due to Self Weight Formula (*) $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}} \end{bmatrix}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}} \end{bmatrix}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}} \end{bmatrix}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}} \end{bmatrix}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}} \end{bmatrix}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}} \end{bmatrix}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}} \end{bmatrix}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}} \end{bmatrix}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}} \end{bmatrix}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}} \end{bmatrix}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}} \end{bmatrix}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}} \end{bmatrix}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}} \end{bmatrix}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta l}{\frac{1}{6 \cdot A \cdot E}}$ Example with Units $\begin{bmatrix} Formula \\ W_{Load} = \frac{\delta$

4.9) Modulus of Elasticity of Bar given Elongation of Conical Bar due to Self Weight Formula

4.10) Modulus of Elasticity of Conical Bar with known Elongation and Cross-sectional area Formula

4.11) Modulus of Elasticity of Prismatic Bar with known Elongation due to Self Weight Formula

	<u> </u>	
Formula	Example with Units	Evaluate Formula 🕝
$E = \gamma \cdot L \cdot \frac{L}{\delta l \cdot 2}$	$15.75 {}_{\rm MPa} = 70 {}_{\rm kN/m^3} \cdot 3 {}_{\rm m} \cdot \frac{3 {}_{\rm m}}{0.020 {}_{\rm m} \cdot 2}$	

Evaluate Formula 🦳

6.2) Coefficient of Thermal Expansion given Temperature Stress for Tapering Rod Section Formula

6.6) Modulus of Elasticity using Hoop Stress due to Temperature Fall Formula 🕝 👘

Formula	Example with Units
$E = \frac{\sigma_{h} \cdot d_{tyre}}{D_{wheel} - d_{tyre}}$	$19942.1965 {}_{\text{MPa}} = \frac{15000 {}_{\text{MPa}} \cdot 0.230 {}_{\text{m}}}{0.403 {}_{\text{m}} - 0.230 {}_{\text{m}}}$

6.9) Thickness of Tapered Bar using Temperature Stress Formula 🕝

7) Volumetric Strain of a Rectangular Bar Formulas 🖻

7.1) Strain along Breadth given Volumetric Strain of Rectangular Bar Formula 🕝

FormulaExampleEvaluate Formula
$$\varepsilon_b = \varepsilon_v - (\varepsilon_l + \varepsilon_d)$$
-0.0052 = 0.0001 - (0.002 + 0.0033)

7.2) Strain along Depth given Volumetric Strain of Rectangular Bar Formula 🕝

FormulaExampleEvaluate Formula
$$\varepsilon_d = \varepsilon_v - (\varepsilon_l + \varepsilon_b)$$
-0.0266 = 0.0001 - (0.002 + 0.0247)

Variables used in list of Stress and Strain Formulas above

- A Area of Cross-Section (Square Millimeter)
- A₁ Area 1 (Square Meter)
- A2 Area 2 (Square Meter)
- d Diameter of Shaft (Meter)
- d₁ Diameter1 (Meter)
- d₂ Diameter2 (Meter)
- **D**₂ Depth of Point 2 (*Meter*)
- dtyre Diameter of Tyre (Meter)
- **D**_{wheel} Wheel Diameter (*Meter*)
- E Young's Modulus (Megapascal)
- h 1 Depth of Point 1 (Meter)
- Length of Tapered Bar (Meter)
- L Length (Meter)
- Length of Rod (Meter)
- Laperedbar Tapered Bar Length (Meter)
- t Section Thickness (Meter)
- W Load Applied KN (Kilonewton)
- WApplied load Applied Load (Kilonewton)
- W_{L oad} Applied Load SOM (Kilonewton)
- α Coefficient of Linear Thermal Expansion (Per Degree Celsius)
- **V** Specific Weight (Kilonewton per Cubic Meter)
- YRod Specific Weight of Rod (Kilonewton per Cubic Meter)
- δ_{dia} Change in Diameter (Meter)
- δl Elongation (Meter)
- Δt Change in Temperature (Degree Celsius)
- E Strain
- ε_b Strain along Breadth
- εd Strain along Depth
- ε_I Strain along Length
- ε_I Lateral Strain
- ε_ν Volumetric Strain

Constants, Functions, Measurements used in list of Stress and Strain Formulas above

- constant(s): pi, 3.14159265358979323846264338327950288 Archimedes' constant
- constant(s): e, 2.71828182845904523536028747135266249 Napier's constant
- Functions: In, In(Number) The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
- Functions: log10, log10(Number) The common logarithm, also known as the base-10 logarithm or the decimal logarithm, is a mathematical function that is the inverse of the exponential function.
- Functions: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Area in Square Meter (m²), Square Millimeter (mm²) Area Unit Conversion 🕝
- Measurement: Force in Kilonewton (kN) Force Unit Conversion
- Measurement: Temperature Difference in Degree Celsius (°C) Temperature Difference Unit Conversion
- Measurement: Temperature Coefficient of Resistance in Per Degree Celsius (°C⁻¹) Temperature Coefficient of Resistance Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion
- Measurement: Stress in Megapascal (MPa) Stress Unit Conversion

- **σ** Thermal Stress (Megapascal)
- σ_h Hoop Stress SOM (Megapascal)
- σ_{Uniform} Uniform Stress (Megapascal)
- **Φ** Diameter of Sphere (Meter)

Download other Important Strength of Materials PDFs

- Important Beam Moments Formulas (*) Important Slope and Deflection
 Important Bending Stress Formulas (*) Important Combined Axial and Bending Loads Formulas (*) Important Strain Energy Formulas (*) Important Stress and Strain
 Important Principal Stress Formulas (*) Important Thermal Stress Formulas (*) Important Thermal Stress Formulas (*) Important Torsion Formulas (*) Imp
 - 🜆 Proper fraction 🕝

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/8/2024 | 9:34:29 AM UTC