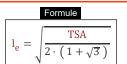
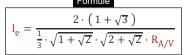
Important Anticube Formules PDF

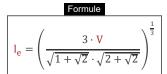


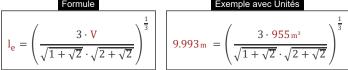
Formules Exemples avec unités

Liste de 20 Important Anticube Formules


1) Longueur du bord de l'anticube Formules 🕝

1.1) Longueur d'arête de l'anticube compte tenu de la surface totale Formule 🕝



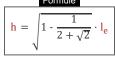

1.2) Longueur d'arête de l'anticube compte tenu du rapport surface/volume Formule 🕝

1.3) Longueur d'arête de l'anticube étant donné le volume Formule 🕝

1.4) Longueur du bord de l'anticube Formule C

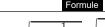
Formule Exemple avec Unités
$$l_e = \frac{h}{\sqrt{1 - \frac{1}{2 + \sqrt{2}}}} \qquad 9.5137_m = \frac{8_m}{\sqrt{1 - \frac{1}{2 + \sqrt{2}}}}$$

Évaluer la formule 🕝


Évaluer la formule 🔂

Évaluer la formule (

Évaluer la formule (


2) Hauteur d'Anticube Formules (7)

2.1) Hauteur de l'Anticube Formule 🕝

Formule Exemple avec Unités
$$h = \sqrt{1 - \frac{1}{2 + \sqrt{2}}} \cdot l_e$$

$$8.409 \text{m} = \sqrt{1 - \frac{1}{2 + \sqrt{2}}} \cdot 10 \text{m}$$

2.2) Hauteur de l'anticube compte tenu de la surface totale Formule 🕝

$$1 - \frac{1}{2 + \sqrt{2}} \cdot \sqrt{\frac{\text{TSA}}{2 \cdot (1 + \sqrt{3})}}$$

Exemple avec Unités

$$h = \sqrt{1 - \frac{1}{2 + \sqrt{2}}} \cdot \sqrt{\frac{TSA}{2 \cdot (1 + \sqrt{3})}} \qquad 8.3981_{m} = \sqrt{1 - \frac{1}{2 + \sqrt{2}}} \cdot \sqrt{\frac{545_{m^{2}}}{2 \cdot (1 + \sqrt{3})}}$$

Évaluer la formule (

2.3) Hauteur de l'Anticube donné Volume Formule C

Formule

$$\mathbf{h} = \sqrt{1 \cdot \frac{1}{2 + \sqrt{2}}} \cdot \left(\frac{3 \cdot \mathbf{V}}{\sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}}}\right)^{\frac{1}{3}}$$

Évaluer la formule (

Exemple avec Unités
$$8.4031\,\mathrm{m}\ = \sqrt{1 - \frac{1}{2 + \sqrt{2}}} \cdot \left(\frac{3 \cdot 955\,\mathrm{m}^3}{\sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}}}\right)^{\frac{1}{3}}$$

2.4) Hauteur de l'anticube étant donné le rapport surface/volume Formule 🕝

Évaluer la formule (

$$\mathbf{h} = \sqrt{1 - \frac{1}{2 + \sqrt{2}}} \cdot \frac{2 \cdot (1 + \sqrt{3})}{\frac{1}{3} \cdot \sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} \cdot R_{A/V}}$$

$$9.6024_{\,\mathrm{m}} \, = \, \sqrt{1 \cdot \frac{1}{2 + \sqrt{2}}} \cdot \frac{2 \cdot \left(1 + \sqrt{3}\,\right)}{\frac{1}{3} \cdot \sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} \cdot 0.5_{\,\mathrm{m}^{-1}}}$$

3) Superficie de l'Anticube Formules 🕝

3.1) Surface totale de l'Anticube Formules

3.1.1) Surface totale de l'Anticube Formule

Formule

TSA =
$$2 \cdot \left(1 + \sqrt{3}\right) \cdot l_e^2$$
 546.4102 m² = $2 \cdot \left(1 + \sqrt{3}\right) \cdot 10 \text{ m}^2$

Exemple avec Unités

$$02 \,\mathrm{m}^2 = 2 \cdot \left(1 + \sqrt{3}\right) \cdot 10 \,\mathrm{m}^2$$

Évaluer la formule 🕝

3.1.2) Surface totale de l'anticube compte tenu de la hauteur Formule [7] Évaluer la formule 🕝

Formule

$$+\sqrt{3}$$
) $\cdot \left(\frac{h}{\sqrt{1-\frac{1}{2\sqrt{5}}}}\right)^2$

Exemple avec Unités

$$TSA = 2 \cdot \left(1 + \sqrt{3}\right) \cdot \left(\frac{h}{\sqrt{1 - \frac{1}{2 + \sqrt{2}}}}\right)^{2} \qquad 494.554 \, m^{2} = 2 \cdot \left(1 + \sqrt{3}\right) \cdot \left(\frac{8 \, m}{\sqrt{1 - \frac{1}{2 + \sqrt{2}}}}\right)^{2}$$

3.1.3) Surface totale de l'anticube compte tenu du rapport surface/volume Formule 🕝

Formule

TSA =
$$2 \cdot \left(1 + \sqrt{3}\right) \cdot \left(\frac{2 \cdot \left(1 + \sqrt{3}\right)}{\frac{1}{3} \cdot \sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} \cdot R_{A/V}}\right)^{2}$$

Exemple avec Unités

$$712.5124\,{_{m^2}} \,=\, 2\cdot \left(\,1\,+\,\sqrt{3}\,\,\right)\cdot \left(\,\frac{2\cdot \left(\,1\,+\,\sqrt{3}\,\,\right)}{\frac{1}{3}\cdot \sqrt{1\,+\,\sqrt{2}}\cdot \sqrt{2\,+\,\sqrt{2}}\cdot 0.5\,{_{m^{-1}}}}\,\right)^2$$

3.1.4) Surface totale de l'Anticube étant donné le volume Formule 🕝

Évaluer la formule 🦳

TSA =
$$2 \cdot \left(1 + \sqrt{3}\right) \cdot \left(\frac{3 \cdot V}{\sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}}}\right)^{\frac{2}{3}}$$

Exemple avec Unités

$$545.6486 \,\mathrm{m}^2 \, = 2 \cdot \left(1 + \sqrt{3}\right) \cdot \left(\frac{3 \cdot 955 \,\mathrm{m}^3}{\sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}}}\right)^{\frac{2}{3}}$$

4) Rapport surface/volume de l'anticube Formules 🕝

4.1) Rapport surface/volume de l'anticube Formule 🕝

$$\mathbf{R_{A/V}} = \frac{2 \cdot (1 + \sqrt{3})}{\frac{1}{3} \cdot \sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} \cdot \mathbf{l_e}}$$

Évaluer la formule

4.2) Rapport surface/volume de l'anticube compte tenu de la hauteur Formule 🗂

$$\mathbf{R}_{\text{A/V}} = \frac{2 \cdot \left(1 + \sqrt{3}\right)}{\frac{1}{3} \cdot \sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} \cdot \frac{\mathbf{h}}{\sqrt{1 \cdot \frac{1}{2 + \sqrt{2}}}}}$$

$$0.6001\,\mathrm{m}^{-1} = \frac{2\cdot\left(1+\sqrt{3}\;\right)}{\frac{1}{3}\cdot\sqrt{1+\sqrt{2}}\cdot\sqrt{2+\sqrt{2}}\cdot\frac{8\,\mathrm{m}}{\sqrt{1\cdot\frac{1}{2+\sqrt{2}}}}}$$

4.3) Rapport surface/volume de l'anticube compte tenu de la surface totale Formule 🕝

Évaluer la formule 🕝

$$R_{\text{A/V}} = \frac{2 \cdot \left(1 + \sqrt{3}\right)}{\frac{1}{3} \cdot \sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} \cdot \sqrt{\frac{\text{TSA}}{2 \cdot \left(1 + \sqrt{3}\right)}}}$$

Exemple avec Unités

$$0.5717\,\mathrm{m}^{-1} = \frac{2\cdot\left(1+\sqrt{3}\,\right)}{\frac{1}{3}\cdot\sqrt{1+\sqrt{2}}\cdot\sqrt{2+\sqrt{2}}\cdot\sqrt{\frac{545\,\mathrm{m}^2}{2\cdot\left(1+\sqrt{3}\,\right)}}}$$

4.4) Rapport surface/volume d'un volume donné d'Anticube Formule 🕝

$$R_{A/V} = \frac{2 \cdot \left(1 + \sqrt{3}\right)}{\frac{1}{3} \cdot \sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} \cdot \left(\frac{3 \cdot V}{\sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}}}\right)^{\frac{1}{3}}}$$

Exemple avec Unités

$$0.5714\,\mathrm{m}^{-1} = \frac{2\cdot\left(1+\sqrt{3}\;\right)}{\frac{1}{3}\cdot\sqrt{1+\sqrt{2}}\cdot\sqrt{2+\sqrt{2}}\cdot\left(\frac{3\cdot955\,\mathrm{m}^3}{\sqrt{1+\sqrt{2}}\cdot\sqrt{2+\sqrt{2}}}\right)^{\frac{1}{3}}}$$

5) Volume d'Anticube Formules (7)

5.1) Volume d'Anticube Formule C

$$\mathbf{V} = \frac{1}{3} \cdot \sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} \cdot \mathbf{l_e}^3$$

$$V = \frac{1}{3} \cdot \sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} \cdot l_e^3$$

$$957 \, m^3 = \frac{1}{3} \cdot \sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} \cdot 10 \, m^3$$

5.2) Volume d'Anticube donné Rapport surface sur volume Formule 🗂

Évaluer la formule 🕝

$$\mathbf{V} = \frac{1}{3} \cdot \sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} \cdot \left(\frac{2 \cdot \left(1 + \sqrt{3}\right)}{\frac{1}{3} \cdot \sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} \cdot \mathbf{R}_{\mathbf{A/V}}} \right)^{3}$$

Exemple avec Unités

$$1425.0248\,{_{m^{3}}}\,=\,\frac{1}{3}\cdot\sqrt{1+\sqrt{2}}\cdot\sqrt{2+\sqrt{2}}\cdot\left(\frac{2\cdot\left(\,1+\sqrt{3}\,\,\right)}{\frac{1}{3}\cdot\sqrt{1+\sqrt{2}}\cdot\sqrt{2+\sqrt{2}}\cdot0.5\,{_{m^{-1}}}}\right)^{3}$$

5.3) Volume d'Anticube donné Surface Totale Formule 🕝

Évaluer la formule (

$$V = \frac{1}{3} \cdot \sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} \cdot \left(\sqrt{\frac{\text{TSA}}{2 \cdot \left(1 + \sqrt{3}\;\right)}}\right)^3$$

Exemple avec Unités

$$953.2977\,{_{m^3}}\,\,=\,\frac{1}{3}\cdot\sqrt{1+\sqrt{2}}\cdot\sqrt{2+\sqrt{2}}\cdot\overline{\left(\sqrt{\frac{545\,{_m^2}}{2\cdot\,\left(\,1+\sqrt{3}\,\right)}}\right)^3}$$

5.4) Volume d'Anticube étant donné la hauteur Formule C

$$\mathbf{V} = \frac{1}{3} \cdot \sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} \cdot \left(\frac{\mathbf{h}}{\sqrt{1 \cdot \frac{1}{2 + \sqrt{2}}}}\right)^{3}$$

Exemple avec Unités

$$824.0516 \,\mathrm{m}^3 \,=\, \frac{1}{3} \cdot \sqrt{1 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2}} \cdot \left(\frac{8 \,\mathrm{m}}{\sqrt{1 - \frac{1}{2 + \sqrt{2}}}} \right)^3$$

Variables utilisées dans la liste de Anticube Formules ci-dessus

- **h** Hauteur de l'Anticube (Mètre)
- le Longueur du bord de l'anticube (Mètre)
- R_{A/V} Rapport surface/volume de l'anticube (1 par mètre)
- TSA Surface totale de l'Anticube (Mètre carré)
- **V** Volume d'Anticube (Mètre cube)

Constantes, fonctions, mesures utilisées dans la liste des Anticube Formules ci-dessus

- Les fonctions: sqrt, sqrt(Number)
 Une fonction racine carrée est une fonction qui prend un nombre non négatif comme entrée et renvoie la racine carrée du nombre d'entrée donné
- La mesure: Longueur in Mètre (m)

 Longueur Conversion d'unité
- La mesure: Volume in Mètre cube (m³)

 Volume Conversion d'unité
- La mesure: Zone in Mètre carré (m²)

 Zone Conversion d'unité
- La mesure: Longueur réciproque in 1 par mètre (m⁻¹)
 Longueur réciproque Conversion d'unité

Téléchargez d'autres PDF Important Géométrie 3D

Important Anticube Formules Important Grand dodécaèdre étoilé Important Antiprisme Formules Formules (Important Baril Formules Important Demi-cylindre Formules Important Cuboïde courbé Formules 🕝 Important Demi tétraèdre Formules 🕝 Important Toupie Formules Important Hémisphère Formules Important Capsule Formules Important Cuboïde creux Formules Important Cylindre creux Formules Important Hyperboloïde circulaire Important Frustum creux Formules Formules (Important Cuboctaèdre Formules • Important Hémisphère creux • Important Cylindre de coupe Formules (• Important Pyramide creuse Formules (Important Coquille cylindrique coupée Formules Formules (Important Sphère creuse Formules Important Cylindre Formules Important Lingot Formules Important Coque cylindrique Important Obélisque Formules Formules (• Important Cylindre oblique Important Cylindre divisé en deux en Formules (diagonale Formules Important Prisme oblique Formules Important Disphénoïde Formules Important Cuboïde à bords obtus Important Double Calotte Formules Formules C Important Double point Formules Important Oloïde Formules Important Ellipsoïde Formules Important Paraboloïde Formules Important Cylindre elliptique Important Parallélépipède Formules Formules C Important Rampe Formules • Important Bipyramide régulière Important Dodécaèdre allongé Formules Formules Important Cylindre à bout plat Important Rhomboèdre Formules 🗂 Formules C Important Coin droit Formules Important Tronc de cône Formules Important Semi-ellipsoïde Formules Important Grand dodécaèdre Important Cylindre coudé tranchant Formules C Formules (**) • Important Prisme asymétrique à trois Important Grand Icosaèdre

Formules C

tranchants Formules (

- Important Petit dodécaèdre étoilé
 Formules
- Important Solide de révolution
 Formules (*)
- Important Sphère Formules
- Important Bouchon sphérique
 Formules
- Important Coin sphérique Formules Important Tore Formules •
- Important Anneau sphérique Formules
- Important Secteur sphérique Formules

- Important Segment sphérique
 Formules
- Important Coin sphérique Formules
- Important Pilier carré Formules
- Important Pyramide étoilée Formules
- Important Octaèdre étoilé Formules 🕝
- Important Tore Formules Important Torus Formules
- Important Tétraèdre trirectangulaire
 Formules
- Important Rhomboèdre tronqué
 Formules (*)

Essayez nos calculatrices visuelles uniques

- Magmentation en pourcentage 🕝 🎆 Calculateur PGCD 🕝
- Fraction mixte

Veuillez PARTAGER ce PDF avec quelqu'un qui en a besoin!

Ce PDF peut être téléchargé dans ces langues

English Spanish French German Russian Italian Portuguese Polish Dutch

7/8/2024 | 9:29:20 AM UTC