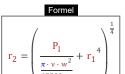
Wichtig Robben Formeln PDF

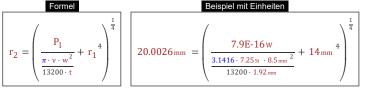
Formeln **Beispiele** mit Einheiten

Liste von 36 Wichtig Robben Formeln

1) Leckage durch Buchsendichtungen Formeln 🕝

1.1) Außendurchmesser der Dichtung bei gegebenem Formfaktor Formel 🕝




Formel auswerten

Formel auswerten

Formel Beispiel mit Einheiten
$$D_{0} = D_{i} + 4 \cdot t \cdot S_{pf}$$

$$59.9904 \, \text{mm} = 54 \, \text{mm} + 4 \cdot 1.92 \, \text{mm} \cdot 0.78$$

1.2) Außenradius des rotierenden Elements bei Leistungsverlust aufgrund von Flüssigkeitsleckage durch die Gleitringdichtung Formel

1.3) Dicke der Flüssigkeit zwischen den Elementen bei Leistungsverlust aufgrund von Flüssigkeitsleckage durch die Gleitringdichtung Formel [7]

$$t = \frac{\pi \cdot \nu \cdot w^{2}}{13200 \cdot P_{l}} \cdot \left(r_{2}^{4} - r_{1}^{4}\right)$$

$$1.9187 \text{ mm} = \frac{3.1416 \cdot 7.25 \text{ st} \cdot 8.5 \text{ mm}^{2}}{13200 \cdot 7.9 \text{E} \cdot 16 \text{ w}} \cdot \left(20 \text{ mm}^{4} - 14 \text{ mm}^{4}\right)$$

1.4) Dicke der Flüssigkeit zwischen Stäben mit gegebenem Formfaktor Formel 🕝

Formel Beispiel mit Einheiten
$$t = \frac{D_o - D_i}{4 \cdot S_{pf}}$$

$$1.9231_{mm} = \frac{60_{mm} - 54_{mm}}{4 \cdot 0.78}$$

Formel auswerten

Formel auswerten

1.5) Formfaktor für kreisförmige oder ringförmige Dichtung Formel C

 $S_{pf} = \frac{D_o - D_i}{4 \cdot t}$ $0.7812 = \frac{60 \, \text{mm} - 54 \, \text{mm}}{4 \cdot 1.92 \, \text{mm}}$

1.6) Hydraulischer Innendruck bei gegebener Nullleckage von Flüssigkeit durch die Gleitringdichtung Formel

Formel auswerten

$$P_2 = P_i + \frac{3 \cdot \rho \cdot \omega^2}{20} \cdot (r_2^2 - r_1^2) \cdot 1000$$

$$0.1893\,{\text{MPa}} \,=\, .0000002\,{\text{MPa}} \,+\, \frac{3\cdot 1100\,{\text{kg/m}}^3\cdot 75\,{\text{rad/s}}^2}{20}\cdot \left(\,20\,{\text{mm}}^2\,-\,14\,{\text{mm}}^2\,\right)\cdot 1000$$

1.7) Innendurchmesser der Dichtung bei gegebenem Formfaktor Formel 🕝

 $D_i = D_o - 4 \cdot t \cdot S_{pf}$ 54.0096mm = 60mm - 4 · 1.92mm · 0.78

Beispiel mit Einheiten

Formel auswerten

Formel auswerten [

1.8) Kinematische Viskosität bei Leistungsverlust aufgrund von Flüssigkeitsleckage durch die Gleitringdichtung Formel

 $\nu = \frac{13200 \cdot P_{l} \cdot t}{\pi \cdot w^{2} \cdot \left(r_{2}^{4} - r_{1}^{4}\right)} \left| 7.255 \text{st} \right| = \frac{13200 \cdot 7.9 \text{E} \cdot 16 \text{w} \cdot 1.92 \text{ mm}}{3.1416 \cdot 8.5 \text{ mm}^{2} \cdot \left(20 \text{ mm}^{4} - 14 \text{ mm}^{4}\right)}$

1.9) Leistungsverlust oder -verbrauch aufgrund von Flüssigkeitslecks durch die Gesichtsdichtung Formel C

Formel auswerten [

$$P_{l} = \frac{\pi \cdot \nu \cdot w^{2}}{13200 \cdot t} \cdot \left(r_{2}^{4} - r_{1}^{4} \right)$$

$$P_{l} = \frac{\pi \cdot v \cdot w^{2}}{13200 \cdot t} \cdot \left(r_{2}^{4} - r_{1}^{4}\right)$$

$$7.9E-16w = \frac{3.1416 \cdot 7.25 \text{ st} \cdot 8.5 \text{ mm}^{2}}{13200 \cdot 1.92 \text{ mm}} \cdot \left(20 \text{ mm}^{4} - 14 \text{ mm}^{4}\right)$$

1.10) Menge an Flüssigkeit, die durch die Gesichtsdichtung austritt Formel

Formel auswerten

$$Q = \frac{\pi \cdot t^{3}}{6 \cdot \nu \cdot \ln\left(\frac{r_{2}}{r_{1}}\right)} \cdot \left(\frac{3 \cdot \rho \cdot \omega^{2}}{20 \cdot [g]} \cdot \left(r_{2}^{2} - r_{1}^{2}\right) - P_{2} - P_{i}\right)$$

Beispiel mit Einheiten

$$259501.2447\,\text{mm}^3/\text{s} \; = \; \frac{3.1416 \cdot 1.92\,\text{mm}^3}{6 \cdot 7.25\,\text{st}\, \cdot \ln \left(\frac{20\,\text{mm}}{14\,\text{mm}}\right)} \cdot \left(\frac{3 \cdot 1100\,\text{kg/m}^3 \cdot 75\,\text{rad/s}^2}{20 \cdot 9.8066\,\text{m/s}^2} \cdot \left(\; 20\,\text{mm}^2 - 14\,\text{mm}^2\right) - 1E\text{-}6\,\text{MPa} \; - .0000002\,\text{MPa} \right)$$

1.11) Ölfluss durch die einfache Axialbuchsendichtung aufgrund von Leckage unter Laminarströmungsbedingungen Formel

Formel auswerten

$$Q = \frac{2 \cdot \pi \cdot a \cdot \left(P_{S} - \frac{P_{e}}{10^{6}}\right)}{1} \cdot q$$

Beispiel mit Einheiter

$$266669.4441 \, \text{mm}^3/\text{s} = \frac{2 \cdot 3.1416 \cdot 15 \, \text{mm} \cdot \left(16 - \frac{2.1 \, \text{MPa}}{10^6}\right)}{0.038262 \, \text{mm}} \cdot 7.788521 \, \text{mm}^3/\text{s}$$

1.12) Ölfluss durch die einfache Radialbuchsendichtung aufgrund von Leckage unter Laminarströmungsbedingungen Formel

$$Q = \frac{2 \cdot \pi \cdot a \cdot \left(P_{S} - \frac{P_{e}}{10^{6}}\right)}{a \cdot b} \cdot q$$

Beispiel mit Einheiter

$$944.7506\,\text{mm}^{3}/\text{s} = \frac{2 \cdot 3.1416 \cdot 15\,\text{mm} \cdot \left(16 - \frac{2.1\,\text{MPa}}{10^{6}}\right)}{15\,\text{mm} - 4.2\,\text{mm}} \cdot 7.788521\,\text{mm}^{3}/\text{s}$$

1.13) Radiale Druckverteilung für laminare Strömung Formel C

Formel auswerten

$$p = P_i + \frac{3 \cdot \rho \cdot \omega^2}{20 \cdot [g]} \cdot \left(r^2 - r_1^2 \right) - \frac{6 \cdot \nu}{\pi \cdot t^3} \cdot \ln\left(\frac{r}{R}\right)$$

$$0.092\, \text{MPa} \ = \ .0000002\, \text{MPa} \ + \ \frac{3 \cdot 1100\, \text{kg/m}^3 \cdot 75\, \text{rad/s}^2}{20 \cdot 9.8066\, \text{m/s}^2} \cdot \left(25\, \text{mm}^2 - 14\, \text{mm}^2\right) - \frac{6 \cdot 7.25\, \text{st}}{3.1416 \cdot 1.92\, \text{mm}^3} \cdot \ln\left(\frac{25\, \text{mm}}{40\, \text{mm}}\right)$$

1.14) Volumenstromrate unter Laminarströmungsbedingungen für Axialbuchsendichtung für komprimierbare Flüssigkeiten Formel

$$q = \frac{c^3}{12 \cdot \mu} \cdot \frac{P_s + P_e}{P_e}$$

1.15) Volumenstromrate unter Laminarströmungsbedingungen für Radialbuchsendichtung für inkompressible Flüssigkeiten Formel

$$q = \frac{c^3}{12 \cdot \mu} \cdot \frac{a \cdot b}{a \cdot \ln\left(\frac{a}{b}\right)} = \frac{4.4052 \text{ mm}^3/\text{s}}{12 \cdot 7.8 \text{ cP}} \cdot \frac{15 \text{ mm} \cdot 4.2 \text{ mm}}{15 \text{ mm} \cdot \ln\left(\frac{15 \text{ mm}}{4.2 \text{ mm}}\right)}$$

Formel auswerten

Formel auswerten [

1.16) Volumenstromrate unter Laminarströmungsbedingungen für Radialbuchsendichtung für komprimierbare Flüssigkeiten Formel

Beispiel mit Einheiten

$$q = \frac{c^{3}}{24 \cdot \mu} \cdot \frac{a - b}{a} \cdot \frac{P_{s} + P_{e}}{P_{a}}$$

$$2.8039 \text{ mm}^{3}/s = \frac{0.9 \text{ mm}}{24 \cdot 7.8 \text{ cP}} \cdot \frac{15 \text{ mm}}{15 \text{ mm}} \cdot \frac{16 + 2.1 \text{ MPa}}{2.1 \text{ MPa}}$$

Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten

1.17) Volumetrischer Wirkungsgrad eines Kolbenkompressors Formel

2) Verpackungslose Dichtungen Formeln

2.1) Austritt von Flüssigkeit an der Stange vorbei Formel [

 $Q_{l} = \frac{\pi \cdot c^{3}}{12} \cdot \left(p_{1} - p_{2} \right) \cdot \frac{d}{l \cdot \mu}$

$$1.6E + 12 \, \text{mm}^3/\text{s} = \frac{3.1416 \cdot 0.9 \, \text{mm}}{12} \cdot \left(\, 200.8501 \, \text{MPa} \, - \, 2.85 \, \text{MPa} \, \right) \cdot \frac{12.6 \, \text{mm}}{0.038262 \, \text{mm} \cdot 7.8 \, \text{cP}}$$

2.2) Durchmesser der Schraube bei Flüssigkeitsleckage Formel 🕝

Formel

Formel Beispiel mit Einheiten
$$d = \frac{12 \cdot l \cdot \mu \cdot Q_l}{\pi \cdot c^3 \cdot \left(p_1 - p_2\right)} = \frac{12 \cdot 0.038262 \, \text{mm} \cdot 7.8 \, \text{cP} \cdot 1.1E6 \, \text{mm}^3/\text{s}}{3.1416 \cdot 0.9 \, \text{mm}^3 \cdot \left(200.8501 \, \text{MPa} - 2.85 \, \text{MPa}\right)}$$

2.3) Radialspiel bei Leckage Formel

$$c = \left(\frac{12 \cdot l \cdot \mu \cdot Q_l}{\pi \cdot d \cdot p_1 - p_2}\right)^{\frac{1}{3}}$$

$$c = \left(\frac{12 \cdot l \cdot \mu \cdot Q_l}{\pi \cdot d \cdot p_1 - p_2}\right)^{\frac{1}{3}}$$

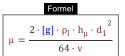
$$0.0092 \, \text{mm} = \left(\frac{12 \cdot 0.038262 \, \text{mm} \cdot 7.8 \, \text{cP} \cdot 1.1E6 \, \text{mm}^3/\text{s}}{3.1416 \cdot 12.6 \, \text{mm} \cdot 200.8501 \, \text{MPa} - 2.85 \, \text{MPa}}\right)^{\frac{1}{3}}$$

2.4) Tiefe des U-Kragens bei Leckage Formel

$$l = \frac{\pi \cdot c^{3}}{12} \cdot \left(p_{1} - p_{2} \right) \cdot \frac{d}{\mu \cdot Q_{l}}$$

$$55493.8456 \, \text{mm} \, = \frac{3.1416 \cdot 0.9 \, \text{mm}^{-3}}{12} \cdot \left(\, 200.8501 \, \text{MPa} \, - 2.85 \, \text{MPa} \, \right) \cdot \frac{12.6 \, \text{mm}}{7.8 \, \text{cP} \cdot 1.1 \, \text{E}6 \, \text{mm}^{-3} / \text{s}}$$

3) Gerade geschnittene Dichtungen Formeln 🕝


3.1) Absolute Viskosität bei gegebener Leckgeschwindigkeit Formel

$$\mu = \frac{\Delta p \cdot r_s^2}{8 \cdot d_l \cdot v} \qquad 7.8 \, \text{cP} = \frac{0.000112 \, \text{MPa} \cdot 10 \, \text{mm}}{8 \cdot 1.5 \, \text{mm} \cdot 119.6581 \, \text{m/s}}$$

Formel auswerten

3.2) Absolute Viskosität bei Verlust der Flüssigkeitshöhe Formel 🕝

$$\mu = \frac{2 \cdot [g] \cdot \rho_l \cdot h_{\mu} \cdot d_1^{\ 2}}{64 \cdot v} \qquad \boxed{ 7.8 \, c_P \, = \frac{2 \cdot 9.8066 \, \text{m/s}^2 \cdot 997 \, \text{kg/m}^2 \cdot 2642.488 \, \text{mm} \cdot 34 \, \text{mm}^2}{64 \cdot 119.6581 \, \text{m/s}} }$$

Formel auswerten

Formel auswerten [

3.3) Außendurchmesser des Dichtungsrings bei Flüssigkeitsdruckverlust Formel 🕝

Formel
$$d_1 = \sqrt{\frac{64 \cdot \mu \cdot v}{2 \cdot [g] \cdot \rho_l \cdot h_u}}$$

$$d_1 = \sqrt{\frac{64 \cdot \mu \cdot v}{2 \cdot [g] \cdot \rho_l \cdot h_\mu}} \qquad 34_{mm} = \sqrt{\frac{64 \cdot 7.8_{\,\text{cP}} \cdot 119.6581_{\,\text{m/s}}}{2 \cdot 9.8066_{\,\text{m/s}^2} \cdot 997_{\,\text{kg/m}^3} \cdot 2642.488_{\,\text{mm}}}}$$

3.4) Bereich der Dichtung in Kontakt mit dem Gleitelement bei Leckage Formel 🕝

Formel Beispiel mit Einheiten
$$A = \frac{Q_0}{v} \qquad 0.0002 \, \mathrm{m^2} \, = \frac{25000000 \, \mathrm{mm^3/s}}{119.6581 \, \mathrm{m/s}}$$

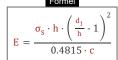
Formel auswerten

3.5) Dichte der Flüssigkeit bei Verlust der Flüssigkeitshöhe Formel 🕝

$$\rho_{l} = \frac{64 \cdot \mu \cdot v}{2 \cdot [\mathbf{g}] \cdot \mathbf{h}_{\mu} \cdot \mathbf{d}_{1}^{2}}$$

$$\rho_{l} = \frac{64 \cdot \mu \cdot v}{2 \cdot [g] \cdot h_{\mu} \cdot d_{1}^{\ 2}} \qquad 997 \, {\rm kg/m^{3}} = \frac{64 \cdot 7.8 \, {\rm cP} \cdot 119.6581 \, {\rm m/s}}{2 \cdot 9.8066 \, {\rm m/s^{2}} \cdot 2642.488 \, {\rm mm} \cdot 34 \, {\rm mm}^{\ 2}}$$

Formel auswerten


3.6) Druckänderung bei Leckgeschwindigkeit Formel 🕝

$$\Delta p = \frac{8 \cdot d_l \cdot \mu \cdot v}{r_s^2}$$

$$0.0001\,\text{MPa} = \frac{8\cdot 1.5\,\text{mm}\,\cdot 7.8\,\text{cP}\,\cdot 119.6581\,\text{m/s}}{10\,\text{mm}^2}$$

Formel auswerten

3.7) Elastizitätsmodul bei Spannung im Dichtungsring Formel C

Beispiel mit Einheiten

Formel auswerten

 $v = \frac{Q_0}{A} \left| \quad 120.1923 \, \text{m/s} \right| = \frac{25000000 \, \text{mm}^3/\text{s}}{0.000208 \, \text{m}^2}$

3.9) Inkrementelle Länge in Geschwindigkeitsrichtung bei gegebener Leckagegeschwindigkeit Formel

Formel auswerten

3.10) Leckgeschwindigkeit Formel C

Formel
$$v = \frac{\Delta p \cdot r_s}{2}$$

Beispiel mit Einheiten $v = \frac{\Delta p \cdot r_s^2}{8 \cdot d_1 \cdot \mu} \qquad 119.6581 \, \text{m/s} = \frac{0.000112 \, \text{MPa} \cdot 10 \, \text{mm}^2}{8 \cdot 1.5 \, \text{mm} \cdot 7.8 \, \text{cP}}$ Formel auswerten

3.11) Menge der Leckage Formel (

Formel

Beispiel mit Einheiten $2.5E+7 \,\mathrm{mm^3/s} = 119.6581 \,\mathrm{m/s} \cdot 0.000208 \,\mathrm{m^2}$ Formel auswerten

3.12) Radialspiel bei Spannung im Dichtring Formel 🕝

 $c = \frac{\sigma_{s} \cdot h \cdot \left(\frac{d_{1}}{h} - 1\right)^{2}}{0.9 \text{ mm}} = \frac{151.8242 \text{ MPa} \cdot 35 \text{ mm} \cdot \left(\frac{34 \text{ mm}}{35 \text{ mm}} - 1\right)^{2}}{0.9 \text{ mm}}$

Formel auswerten

3.13) Radius bei gegebener Leckgeschwindigkeit Formel

Beispiel mit Einheiten $r_s = \sqrt{\frac{8 \cdot d_1 \cdot \mu \cdot v}{\Delta p}} \boxed{ 10_{mm} = \sqrt{\frac{8 \cdot 1.5_{mm} \cdot 7.8_{cP} \cdot 119.6581_{m/s}}{0.000112_{MPa}}} }$ Formel auswerten

3.14) Spannung im Dichtungsring Formel

Beispiel mit Einheiten $\sigma_{S} = \frac{0.4815 \cdot c \cdot E}{h \cdot \left(\frac{d_{1}}{h} - 1\right)^{2}} \left[151.8242 \, \text{MPa} \right. = \frac{0.4815 \cdot 0.9 \, \text{mm} \cdot 10.01 \, \text{MPa}}{35 \, \text{mm} \cdot \left(\frac{34 \, \text{mm}}{35 \, \text{mm}} - 1\right)^{2}} \right]$ Formel auswerten

3.15) Verlust des Flüssigkeitsdrucks Formel [

$$h_{\mu} = \frac{64 \cdot \mu \cdot v}{2 \cdot [\mathbf{g}] \cdot \rho_{1} \cdot d_{1}^{\, 2}} \quad 2642.488 \, \text{mm} \, = \frac{64 \cdot 7.8 \, \text{cP} \cdot 119.6581 \, \text{m/s}}{2 \cdot 9.8066 \, \text{m/s}^{2} \cdot 997 \, \text{kg/m}^{3} \cdot 34 \, \text{mm}}$$

Formel auswerten

In der Liste von Robben Formeln oben verwendete Variablen

- a Äußerer Radius der einfachen Buchsendichtung (Millimeter)
- A Bereich (Quadratmeter)
- b Innenradius der Gleitlagerdichtung (Millimeter)
- C Radialspiel für Dichtungen (Millimeter)
- d Durchmesser des Dichtungsbolzens (Millimeter)
- d₁ Außendurchmesser des Dichtungsrings (Millimeter)
- **D**_i Innendurchmesser der Stopfbuchse (Millimeter)
- d_I Inkrementelle Länge in Geschwindigkeitsrichtung (Millimeter)
- **D** Außendurchmesser der Stopfbuchse (Millimeter)
- E Elastizitätsmodul (Megapascal)
- h Radiale Ringwandstärke (Millimeter)
- h_u Verlust der Flüssigkeitssäule (Millimeter)
- I Tiefe des U-Kragens (Millimeter)
- p Druck an radialer Position für Buchsendichtung (Megapascal)
- p₁ Flüssigkeitsdruck 1 für Dichtung (Megapascal)
- p₂ Flüssigkeitsdruck 2 für Dichtung (Megapascal)
- P₂ Interner Hydraulikdruck (Megapascal)
- Pe Austrittsdruck (Megapascal)
- Pi Druck am Innenradius der Dichtung (Megapascal)
- PI Leistungsverlust für die Dichtung (Watt)
- P_s Minimale prozentuale Komprimierung
- q Volumenstrom pro Druckeinheit (Kubikmillimeter pro Sekunde)
- Q Ölfluss von der Buchsendichtung (Kubikmillimeter pro Sekunde)
- Q_I Flüssigkeitsleckage aus packungslosen Dichtungen (Kubikmillimeter pro Sekunde)
- Q_o Entladung durch Öffnung (Kubikmillimeter pro Sekunde)
- r Radiale Position in der Buchsendichtung (Millimeter)
- R Radius des rotierenden Elements innerhalb der Buchsendichtung (Millimeter)
- r₁ Innenradius des rotierenden Elements innerhalb der Buchsendichtung (Millimeter)

Konstanten, Funktionen, Messungen, die in der Liste von Robben Formeln oben verwendet werden

- Konstante(n): pi, 3.14159265358979323846264338327950288 Archimedes-Konstante
- Konstante(n): [g], 9.80665
 Gravitationsbeschleunigung auf der Erde
- Funktionen: In, In(Number)
 Der natürliche Logarithmus, auch Logarithmus zur
 Basis e genannt, ist die Umkehrfunktion der
 natürlichen Exponentialfunktion.
- Funktionen: sqrt, sqrt(Number)
 Eine Quadratwurzelfunktion ist eine Funktion, die eine
 nicht negative Zahl als Eingabe verwendet und die
 Quadratwurzel der gegebenen Eingabezahl
 zurückgibt.
- Messung: Länge in Millimeter (mm)
 Länge Einheitenumrechnung
- Messung: Volumen in Kubikmeter (m³)

 Volumen Einheitenumrechnung
- Messung: Bereich in Quadratmeter (m²)

 Bereich Einheitenumrechnung
- Messung: Druck in Megapascal (MPa)

 Druck Einheitenumrechnung
- Messung: Geschwindigkeit in Meter pro Sekunde (m/s)
 - Geschwindigkeit Einheitenumrechnung
- Messung: Leistung in Watt (W)
 Leistung Einheitenumrechnung
- Messung: Volumenstrom in Kubikmillimeter pro Sekunde (mm³/s)

 Volumenstrom Einheitenumrechnung
- Messung: Dynamische Viskosität in Centipoise (cP)
 Dynamische Viskosität Einheitenumrechnung
- Messung: Kinematische Viskosität in stokes (St)
 Kinematische Viskosität Einheitenumrechnung
- Messung: Winkelgeschwindigkeit in Radiant pro Sekunde (rad/s)
 Winkelgeschwindigkeit Einheitenumrechnung
- Messung: Dichte in Kilogramm pro Kubikmeter (kg/m³)
 Dichte Einheitenumrechnung

- r₂ Außenradius des rotierenden Elements Innenbuchsendichtung (Millimeter)
- r_s Radius der Versiegelung (Millimeter)
- **S**pf Formfaktor für runde Dichtung
- **t** Dicke der Flüssigkeit zwischen den Elementen (*Millimeter*)
- V Geschwindigkeit (Meter pro Sekunde)
- V_a Tatsächliches Volumen (Kubikmeter)
- V_n Hubraum (Kubikmeter)
- w Nomineller Packungsquerschnitt der Buchsendichtung (Millimeter)
- Δp Druckänderung (Megapascal)
- η_V Volumetrischer Wirkungsgrad
- µ Absolute Viskosität von Öl in Dichtungen (Centipoise)
- V Kinematische Viskosität der Dichtungsflüssigkeit (stokes)
- ρ Dichtungsflüssigkeitsdichte (Kilogramm pro Kubikmeter)
- ρ_l Dichte der Flüssigkeit (Kilogramm pro Kubikmeter)
- σ_s Spannung im Dichtungsring (Megapascal)
- ω Drehzahl der Welle innerhalb der Dichtung (Radiant pro Sekunde)

Laden Sie andere Wichtig Design der Kupplung-PDFs herunter

- Wichtig Design der Splintverbindung
 Formeln
- Wichtig Design des Knöchelgelenks Formeln (*)
- Wichtig Design einer starren Flanschkupplung Formeln
- Wichtig Verpackung Formeln

- Wichtig Sicherungsringe und Sicherungsringe Formeln
- Wichtig Genietete Verbindungen Formeln
- Wichtig Robben Formeln
- Wichtig Schraubverbindungen mit Gewinde Formeln

Probieren Sie unsere einzigartigen visuellen Rechner aus

- Prozentualer Fehler
- 34 Bruch subtrahieren

• KGV von drei zahlen

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 10:25:51 AM UTC