Important Relative Strength of Two Acids Formulas PDF

2) Concentration of Acid 1 given Relative Strength, Conc of Acid 2 and Diss const of both Acids Formula

3) Concentration of Acid 2 given Relative Strength, Conc of Acid 1 and Degree of Diss of both Acids Formula

FormulaExample with Units
$$C_2 = \frac{C_1 \cdot \boldsymbol{\alpha}_1}{R_{strength} \cdot \boldsymbol{\alpha}_2}$$
 $20 \mod/L = \frac{10 \mod/L \cdot 0.5}{2 \cdot 0.125}$

4) Concentration of Acid 2 given Relative Strength, Conc of Acid 1 and Diss Const of both Acids Formula

5) Concentration of Hydrogen Ion of Acid 1 given Relative Strength and Conc of Hydrogen Ion of Acid 2 Formula

Formula	Example with Units	Evaluate Formula 🕝
$H_{+}1 = R_{strength} \cdot H^{+}2$	$5 \text{ mol/L} = 2 \cdot 2.5 \text{ mol/L}$	

Evaluate Formula 🦳

Evaluate Formula

6) Concentration of Hydrogen Ion of Acid 2 given Relative Strength and Conc of Hydrogen Ion of Acid 1 Formula

Evaluate Formula 🦳

Evaluate Formula

Formula	Example with Units
$H^+2 = \frac{H_+1}{R_{strength}}$	$2.5 \text{ mol/L} = \frac{5 \text{ mol/L}}{2}$

7) Degree of Dissociation 1 given Relative Strength, Conc of both Acid and Degree of Diss 2 Formula

8) Degree of Dissociation 2 given Relative Strength, Conc of both Acid and Degree of Diss 1 Formula

Formula	Example with Units	Evaluate Formula 🕝
$\boldsymbol{\alpha}_{2} = \frac{C_{1} \cdot \boldsymbol{\alpha}_{1}}{R_{strength} \cdot C_{2}}$	$0.125 = \frac{10 \text{mol/L} \cdot 0.5}{2 \cdot 20 \text{mol/L}}$	

9) Dissociation Constant 1 given Relative Strength, Conc of both Acid and Diss Const 2 Formula

10) Dissociation Constant 2 given Relative Strength, Conc of both Acid and Diss Const 1 Formula

Formula	Example with Units
$K_{a2} = \frac{C'_{1} \cdot K_{a1}}{\left(R_{strength}^{2}\right) \cdot C_{s}}$	$4.5E-10 = \frac{0.0024 \text{mol/L} \cdot 1.5E-5}{\left(2^2\right) \cdot 20 \text{mol/L}}$

11) Relative Strength of Two Acids given Concentration and Degree of Dissociations of both Acids Formula

Formula	Example with Units	Evaluate Formula 🔂
$R_{strength} = \frac{C_1 \cdot \boldsymbol{\alpha}_1}{C_2 \cdot \boldsymbol{\alpha}_2}$	$2 = \frac{10 \text{mol/L} \cdot 0.5}{20 \text{mol/L} \cdot 0.125}$	

12) Relative Strength of Two Acids given Concentration and Dissociation Constant of both Acids Formula 🕝

Evaluate Formula

Evaluate Formula

13) Relative Strength of Two Acids given Concentration of Hydrogen Ion of both Acids Formula

Variables used in list of Relative Strength of Two Acids Formulas above

- C1 Concentration of Acid 1 (Mole per Liter)
- **C'**₁ Conc. of Acid 1 given Dissociation Constant (*Mole per Liter*)
- C₂ Concentration of Acid 2 (Mole per Liter)
- H₊1 Hydrogen Ion Furnished by Acid 1 (Mole per Liter)
- H⁺2 Hydrogen Ion Furnished by Acid 2 (*Mole per Liter*)
- Ka1 Dissociation Constant of Weak Acid 1
- Ka2 Dissociation Constant of Weak Acid 2
- R_{strength} Relative Strength of Two Acids
- α₁ Degree of Dissociation 1
- α₂ Degree of Dissociation 2

Constants, Functions, Measurements used in list of Relative Strength of Two Acids Formulas above

- Functions: sqrt, sqrt(Number)
 A square root function is a function that takes a
 non-negative number as an input and returns the
 square root of the given input number.
- Measurement: Molar Concentration in Mole per Liter (mol/L)

Molar Concentration Unit Conversion 🕝

Download other Important Ionic equilibrium PDFs

- Important Acidity and pH Scale
 Formulas
- Important Ostwald Dilution Law
 Formulas
- Important Buffer Solution Formulas 🕝 Important Relative Strength of Two Acids Formulas 🕝

Try our Unique Visual Calculators

Percentage share C

HCF of two numbers

Improper fraction C

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/8/2024 | 8:38:15 AM UTC

