Important Nominal Pi-Method in Medium Line Formulas PDF

7) Load Current using Transmission Efficiency in Nominal Pi Method Formula 🕝

Evaluate Formula

valuateFormula 🥅

ormula 🗲

Evaluate Formula

Formula	Example with Units
$I_{L(pi)} = \sqrt{\frac{\left(\frac{P_{r(pi)}}{\eta_{pi}}\right) - P_{r(pi)}}{R_{pi}} \cdot 3}$	$5.8361 \text{ A} = \sqrt{\frac{\left(\frac{250.1 \text{ w}}{0.745}\right) - 250.1 \text{ w}}{7.54 \Omega}} \cdot 3$

9) Losses using Transmission Efficiency in Nominal Pi Method Formula 🕝

FormulaExample with UnitsEvaluate Formula
$$P_{loss(pi)} = \left(\frac{P_{r(pi)}}{\eta_{pi}}\right) - P_{r(pi)}$$
 $85.6047 w = \left(\frac{250.1 w}{0.745}\right) - 250.1 w$

10) Receiving End Angle using Transmission Efficiency in Nominal Pi Method Formula 🗺

FormulaExample with UnitsE
$$\Phi_{r(pi)} = a \cos \left(\frac{\eta_{pi} \cdot P_{s(pi)}}{3 \cdot I_{r(pi)} \cdot V_{r(pi)}} \right)$$
 $87.9981^{\circ} = a \cos \left(\frac{0.745 \cdot 335 w}{3 \cdot 7.44 A \cdot 320.1 v} \right)$

11) Receiving End Current using Transmission Efficiency in Nominal Pi Method Formula 🕝

FormulaExample with UnitsEvaluate F
$$p_{ij} = \frac{\eta_{pi} \cdot P_{s(pi)}}{3 \cdot V_{r(pi)} \cdot (\cos(\Phi_{r(pi)}))}$$
 $7.4099_A = \frac{0.745 \cdot 335 w}{3 \cdot 320.1 v \cdot (\cos(87.99^\circ))}$

12) Receiving End Voltage using Sending End Power in Nominal Pi Method Formula 🕝

Formula	Example with Units
$V_{r(pi)} = \frac{P_{s(pi)} - P_{loss(pi)}}{I_{r(pi)} \cdot \cos(\Phi_{r(pi)})}$	$957.2716v = \frac{335w - 85.2w}{7.44a \cdot \cos(87.99^\circ)}$

I_{r(}

13) Receiving End Voltage using Voltage Regulation in Nominal Pi Method Formula 🕝 👘

14) Resistance using Losses in Nominal Pi Method Formula 🕝

Evaluate Formula

Evaluate Formula 🦳

Evaluate Formula

Formula	Example with Units
$V_{r(pi)} = \frac{V_{s(pi)}}{\%V_{pi} + 1}$	$321.9512v = \frac{396v}{0.23 + 1}$

FormulaExample with UnitsEvaluate Formula $R_{pi} = \frac{P_{loss(pi)}}{I_{L(pi)}^2}$ $7.5468 \alpha = \frac{85.2 w}{3.36 a^2}$ 15) Sending End Current using Transmission Efficiency in Nominal Pi Method Formula

Formula	Example with Units	Evaluate Formula
$I_{s(pi)} = \frac{P_{r(pi)}}{3 \cdot \cos(\Phi_{s(pi)}) \cdot \eta_{pi} \cdot V_{s(pi)}}$	$0.3048_{\rm A} = \frac{250.1 \rm w}{3 \cdot \cos\left(22^\circ\right) \cdot 0.745 \cdot 396 \rm v}$	

16) Sending End Power using Transmission Efficiency in Nominal Pi Method Formula 🕝 👘

Formula	Example with Units
$P_{s(pi)} = \frac{P_{r(pi)}}{\eta_{pi}}$	$335.7047 \text{w} = \frac{250.1 \text{w}}{0.745}$

17) Sending End Voltage using Transmission Efficiency in Nominal Pi Method Formula 🕝 👘

Formula	Example with Units	Evaluate Formula 🕝
$V_{s(pi)} = \frac{P_{r(pi)}}{3 \cdot \cos(\Phi_{s(pi)}) \cdot I_{s(pi)}} / \eta_{pi}$	$402.2991v = \frac{250.1w}{3 \cdot \cos(22^\circ) \cdot 0.3A} / 0.745$	

18) Sending End Voltage using Voltage Regulation in Nominal Pi Method Formula 🕝 👘

Formula	Example with Units	Evaluate Formula 🕝
$V_{s(pi)} = V_{r(pi)} \cdot \left(\ \% V_{pi} + 1 \right)$	$393.723v = 320.1v \cdot (0.23 + 1)$	

19) Transmission Efficiency (Nominal Pi Method) Formula 🕝

Formula	Example with Units
$\eta_{pi} = \frac{P_{r(pi)}}{P_{s(pi)}}$	$0.7466 = \frac{250.1 \text{w}}{335 \text{w}}$

20) Voltage Regulation (Nominal Pi Method) Formula 🕝

Evaluate Formula 🕝

Variables used in list of Nominal Pi-Method in Medium Line Formulas above

- %Vpi Voltage Regulation in PI
- Api A Parameter in PI
- B_{pi} B Parameter in PI (Ohm)
- Cpi C Parameter in PI (Siemens)
- D_{pi} D Parameter in PI
- IL(pi) Load Current in PI (Ampere)
- Ir(pi) Receiving End Current in PI (Ampere)
- Is(pi) Sending End Current in PI (Ampere)
- Ploss(pi) Power Loss in PI (Watt)
- Pr(pi) Receiving End Power in PI (Watt)
- Ps(pi) Sending End Power in PI (Watt)
- R_{pi} Resistance in PI (Ohm)
- Vr(pi) Receiving End Voltage in PI (Volt)
- V_{s(pi)} Sending End Voltage in PI (Volt)
- Ypi Admittance in PI (Siemens)
- Z_{pi} Impedance in PI (Ohm)
- η_{pi} Transmission Efficiency in PI
- **Φ_{r(pi)}** Receiving End Phase Angle in PI (Degree)
- **Φ**_{s(pi)} Sending End Phase Angle in PI (Degree)

Constants, Functions, Measurements used in list of Nominal Pi-Method in Medium Line Formulas above

- Functions: acos, acos(Number) The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.
- Functions: cos, cos(Angle) Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Functions: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Electric Current in Ampere (A) Electric Current Unit Conversion
- Measurement: Power in Watt (W) Power Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω) Electric Resistance Unit Conversion
- Measurement: Electric Conductance in Siemens (S)

Electric Conductance Unit Conversion 🕝

Measurement: Electric Potential in Volt (V)
Electric Potential Unit Conversion

Download other Important Medium Line PDFs

- Important End Condenser Method in Medium Line Formulas ()
- Important Nominal T-Method in Medium Line Formulas (C)
- Important Nominal Pi-Method in Medium Line Formulas

Try our Unique Visual Calculators

- Percentage of number
- 🎆 LCM calculator 🕝

Simple fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/8/2024 | 8:09:06 AM UTC

