Important AC Bridge Circuits Formulas PDF

Formula	Example with Units
$\epsilon_r \cdot [Permitivity-vacuum] \cdot A$	$6.3842 \text{ wr} = \frac{199 \cdot 8.9\text{E} \cdot 12\text{F/m}}{1.45 \text{ m}^2}$
$C_s =d$	0.3042 µr = 0.4 mm

6) Wien Bridge Formulas 🕝

6.1) Angular Frequency in Wien's Bridge Formula 🕝

Variables used in list of AC Bridge Circuits Formulas above

- A Electrode Effective Area (Square Meter)
- C Effective Capacitance (Microfarad)
- C_(ab) Capacitance in Anderson Bridge (*Microfarad*)
- C_{1(dsb)} Unknown Capacitance in De Sauty Bridge (*Microfarad*)
- C_{1(sb)} Unknown Capacitance in Schering Bridge (*Microfarad*)
- C_{1(wein)} Known Capacitance 1 in Wein Bridge (*Microfarad*)
- C_{2(dsb)} Known Capacitance in De Sauty Bridge (*Microfarad*)
- C_{2(sb)} Known Capacitance 2 in Schering Bridge (*Microfarad*)
- C_{2(wein)} Known Capacitance 2 in Wein Bridge (*Microfarad*)
- C4(hav) Capacitance in Hay Bridge (Microfarad)
- C_{4(sb)} Known Capacitance 4 in Schering Bridge (*Microfarad*)
- C_o Capacitance between Specimen and Dielectric (*Microfarad*)
- C_s Specimen Capacitance (Microfarad)
- d Spacing between Electrodes (Millimeter)
- D_{1(dsb)} Dissipation Factor 1 in De Sauty Bridge
- D_{1(sb)} Dissipation Factor in Schering Bridge
- D_{2(dsb)} Dissipation Factor 2 in De Sauty Bridge
- f_(wein) Unknown Frequency in Wein Bridge (Hertz)
- I_{1(ab)} Inductor Current in Anderson Bridge (Ampere)
- I1(max) Current 1 in Maxwell Bridge (Ampere)
- I_{c(ab)} Capacitor Current in Anderson Bridge (Ampere)
- L_{1(ab)} Unknown Inductance in Anderson Bridge (*Millihenry*)

Constants, Functions, Measurements used in list of AC Bridge Circuits Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- constant(s): [Permitivity-vacuum], 8.85E-12 Permittivity of vacuum
- Functions: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Electric Current in Ampere (A) Electric Current Unit Conversion
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Power in Watt (W) Power Unit Conversion
- Measurement: Frequency in Hertz (Hz) Frequency Unit Conversion
- Measurement: Capacitance in Microfarad (μF)
 Capacitance Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω) Electric Resistance Unit Conversion
- Measurement: Inductance in Millihenry (mH)
 Inductance Unit Conversion
- Measurement: Angular Frequency in Radian per Second (rad/s) Angular Frequency Unit Conversion

- L_{1(hay)} Unknown Inductance in Hay Bridge (*Millihenry*)
- L_{1(max)} Unknown Inductance in Maxwell Bridge (*Millihenry*)
- L_{2(max)} Variable Inductance in Maxwell Bridge (*Millihenry*)
- Q(hay) Quality Factor in Hay Bridge
- Q(max) Quality Factor in Maxwell Bridge
- r_{1(ab)} Series Resistance in Anderson Bridge (Ohm)
- R_{1(ab)} Inductor Resistance in Anderson Bridge (Ohm)
- r_{1(dsb)} Capacitor 1 Resistance in De Sauty Bridge (Ohm)
- R_{1(hay)} Unknown Resistance in Hay Bridge (Ohm)
- R_{1(max)} Unknown Resistance in Maxwell Bridge (Ohm)
- r_{1(sb)} Series Resistance 1 in Schering Bridge (Ohm)
- R_{1(wein)} Known Resistance 1 in Wein Bridge (Ohm)
- R_{2(ab)} Known Resistance 2 in Anderson Bridge (Ohm)
- r_{2(dsb)} Capacitor 2 Resistance in De Sauty Bridge (Ohm)
- R_{2(hay)} Known Resistance 2 in Hay Bridge (Ohm)
- r_{2(max)} Decade Resistance in Maxwell Bridge (Ohm)
- R_{2(max)} Variable Resistance in Maxwell Bridge (Ohm)
- R_{2(wein)} Known Resistance 2 in Wein Bridge (Ohm)
- R_{3(ab)} Known Resistance 3 in Anderson Bridge (Ohm)
- R_{3(dsb)} Known Resistance 3 in De Sauty Bridge (Ohm)

- R_{3(hay)} Known Resistance 3 in Hay Bridge (Ohm)
- R_{3(max)} Known Resistance 3 in Maxwell Bridge (Ohm)
- R_{3(sb)} Known Resistance 3 in Schering Bridge (Ohm)
- R_{4(ab)} Known Resistance 4 in Anderson Bridge (Ohm)
- R_{4(dsb)} Known Resistance 4 in De Sauty Bridge (Ohm)
- R4(hay) Known Resistance 4 in Hay Bridge (Ohm)
- R4(max) Known Resistance 4 in Maxwell Bridge (Ohm)
- R_{4(sb)} Known Resistance 4 in Schering Bridge (Ohm)
- R_{c(max)} Coil Winding Resistance in Maxwell Bridge (Ohm)
- Reff(max) Effective Resistance in Maxwell Bridge (Ohm)
- RR_(wein) Resistance Ratio in Wein Bridge
- W(max) Iron Loss in Maxwell Bridge (Watt)
- ε_r Relative Permittivity
- ω Angular Frequency (Radian per Second)
- ω Angular Frequency (Radian per Second)
- ω_(wein) Angular Frequency in Wein Bridge (Radian per Second)

- Percentage of number C
- 🙀 LCM calculator 🕝

Simple fraction C

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/8/2024 | 8:05:55 AM UTC

