Importante Elementi di vibrazione Formule PDF

Lista di 14

Importante Elementi di vibrazione Formule

Valutare la formula (

Valutare la formula

Valutare la formula

Valutare la formula 🕝

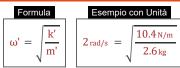
Valutare la formula 🕝

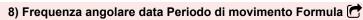
Valutare la formula

1) Entità dell'accelerazione del corpo nel moto armonico semplice Formula 🕝

2) Entità dell'accelerazione del corpo nel moto armonico semplice dato lo spostamento Formula

3) Entità dell'accelerazione massima del corpo nel moto armonico semplice Formula 🗂


4) Forza della molla Formula 🗂


Formula Esempio con Unità
$$P_{spring} = k' \cdot d \qquad \boxed{132.808 \, \text{N} \, = \, 10.4 \, \text{N/m} \, \cdot 12.77 \, \text{m}}$$

5) Forza di smorzamento Formula

6) Forza d'inerzia Formula 🕝

7) Frequenza angolare Formula 🗂

Esempio con Unità

Valutare la formula 🦳

9) Frequenza date la costante elastica e la massa Formula 🕝

Formula

$$f = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{k'}{m'}} \qquad 0.3183 \, \text{Hz} \, = \frac{1}{2 \cdot 3.1416} \cdot \sqrt{\frac{10.4 \, \text{N/m}}{2.6 \, \text{kg}}}$$

Valutare la formula

10) Lavoro svolto dalla forza armonica Formula 🕝

Esempio con Unità

$$w = \pi \cdot F_h \cdot d \cdot \sin \left(\Phi \right) \quad \left| \quad 0.0935 \, \text{KJ} \right| = 3.1416 \cdot 2.5 \, \text{N} \cdot 12.77 \, \text{m} \cdot \sin \left(1.2 \, \text{rad} \right)$$

Valutare la formula

11) Periodo del moto nel moto armonico semplice Formula 🕝

Esempio con Unità

$$T = 2 \cdot \frac{\pi}{\omega}$$
 31.4159s = $2 \cdot \frac{3.1416}{0.2 \, \text{rad/s}}$

12) Spostamento del corpo nel moto armonico semplice Formula 🕝

Formula

Esempio con Unità

Valutare la formula

Valutare la formula 🕝

Valutare la formula 🦳

13) Velocità del corpo nel moto armonico semplice Formula 🕝

Formula

Esempio con Unità

$$V = A' \cdot \omega \cdot \cos(\omega \cdot t_{sec})$$

$$0.6633 \, \text{m/s} = 13.2 \, \text{m} \cdot 0.2 \, \text{rad/s} \cdot \cos(0.2 \, \text{rad/s} \cdot 38 \, \text{s})$$

14) Velocità massima del corpo nel moto armonico semplice Formula 🗂

Formula

 $V_{max} = \omega \cdot A'$

Esempio con Unità

 $2.64 \,\mathrm{m/s} = 0.2 \,\mathrm{rad/s} \cdot 13.2 \,\mathrm{m}$

Variabili utilizzate nell'elenco di Elementi di vibrazione Formule sopra

- a Accelerazione (Metro/ Piazza Seconda)
- A' Ampiezza vibrazionale (metro)
- a_{max} Massima accelerazione (Metro/ Piazza Seconda)
- C Coefficiente di smorzamento (Newton secondo per metro)
- **d** Spostamento del corpo (metro)
- **f** Frequenza vibrazionale (Hertz)
- Fd Forza di smorzamento (Newton)
- **F_h** Forza armonica (Newton)
- Finertia Forza d'inerzia (Newton)
- **k'** Rigidità primaverile (Newton per metro)
- m' Messa allegata alla Primavera (Chilogrammo)
- P_{spring} Forza della molla (Newton)
- T Periodo di tempo delle oscillazioni (Secondo)
- t_n Periodo di tempo SHM (Secondo)
- t_{sec} Tempo in secondi (Secondo)
- V Velocità del corpo (Metro al secondo)
- V_{max} Velocità massima (Metro al secondo)
- W Lavoro fatto (Kilojoule)
- Φ Differenza di fase (Radiante)
- **ω** Velocità angolare (Radiante al secondo)
- ω' Frequenza angolare (Radiante al secondo)

Costanti, funzioni, misure utilizzate nell'elenco di Elementi di vibrazione Formule sopra

- costante(i): pi,
 - 3.14159265358979323846264338327950288 Costante di Archimede
- Funzioni: cos, cos(Angle)
 Il coseno di un angolo è il rapporto tra il lato adiacente all'angolo e l'ipotenusa del triangolo.
- Funzioni: sin, sin(Angle)
 Il seno è una funzione trigonometrica che
 descrive il rapporto tra la lunghezza del lato
 opposto di un triangolo rettangolo e la lunghezza
 dell'ipotenusa.
- Funzioni: sqrt, sqrt(Number)
 Una funzione radice quadrata è una funzione che accetta un numero non negativo come input e restituisce la radice quadrata del numero di input specificato.
- Misurazione: Lunghezza in metro (m)
 Lunghezza Conversione di unità
- Misurazione: Peso in Chilogrammo (kg)
 Peso Conversione di unità
- Misurazione: Tempo in Secondo (s)
 Tempo Conversione di unità
- Misurazione: Velocità in Metro al secondo (m/s)
 Velocità Conversione di unità
- Misurazione: Accelerazione in Metro/ Piazza Seconda (m/s²)

Accelerazione Conversione di unità

- Misurazione: Energia in Kilojoule (KJ)

 Energia Conversione di unità
- Misurazione: Forza in Newton (N) Forza Conversione di unità
- Misurazione: Angolo in Radiante (rad)
 Angolo Conversione di unità
- Misurazione: Frequenza in Hertz (Hz)
 Frequenza Conversione di unità
- Misurazione: Tensione superficiale in Newton per metro (N/m)
 Tensione superficiale Conversione di unità
- Misurazione: Velocità angolare in Radiante al secondo (rad/s)

Velocità angolare Conversione di unità

• Misurazione: Coefficiente di smorzamento in Newton secondo per metro (Ns/m) Coefficiente di smorzamento Conversione di unità

• Misurazione: Frequenza angolare in Radiante al secondo (rad/s)

Frequenza angolare Conversione di unità

Scarica altri PDF Importante Vibrazioni meccaniche

Importante Elementi di vibrazione
 Formule

Prova i nostri calcolatori visivi unici

- Percentuale vincita
- MCM di due numeri

• **Image:** Frazione mista

Per favore CONDIVIDI questo PDF con qualcuno che ne ha bisogno!

Questo PDF può essere scaricato in queste lingue

English Spanish French German Russian Italian Portuguese Polish Dutch

7/8/2024 | 7:57:43 AM UTC