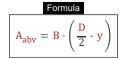
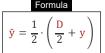
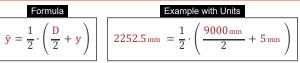
Important Shear Stress in I Section Formulas PDF

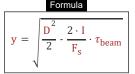


List of 33

Important Shear Stress in I Section Formulas


1) Shear Stress Distribution in Flange Formulas 🕝


1.1) Area of Flange or Area above Considered Section Formula 🕝




1.2) Distance of CG of Considered Area of Flange from Neutral Axis in I Section Formula 🕝

1.3) Distance of Considered Section from Neutral Axis given Shear Stress in Flange Formula

1.4) Distance of Lower Edge of Flange from Neutral Axis Formula [7]

Formula Example with Units
$$y = \frac{d}{2}$$

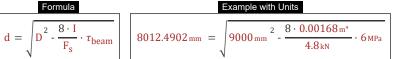
$$225_{mm} = \frac{450_{mm}}{2}$$

Evaluate Formula

Evaluate Formula

Evaluate Formula (

Evaluate Formula (


1.5) Distance of Upper Edge of Flange from Neutral Axis Formula 🕝

1.6) Inner Depth of I-section given Shear Stress in Lower Edge of Flange Formula 🕝

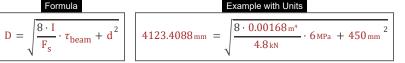
Evaluate Formula (

1.7) Moment of Inertia of I section given Shear Stress in Lower Edge of Flange Formula 🕝

$$I = \frac{F_{S}}{8 \cdot \tau_{beam}} \cdot \left(D^{2} - d^{2}\right)$$

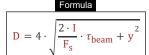
$$I = \frac{F_{S}}{8 \cdot \tau_{beam}} \cdot \left(D^{2} - d^{2}\right) = \frac{4.8 \text{ kN}}{8 \cdot 6 \text{ MPa}} \cdot \left(9000 \text{ mm}^{2} - 450 \text{ mm}^{2}\right)$$

Evaluate Formula (


1.8) Moment of Inertia of Section for I-section Formula [7]

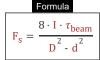
Formula
$$I = \frac{F_s}{2 \cdot \tau_{beam}} \cdot \left(\frac{D^2}{2} - y^2\right)$$

Formula Example with Units
$$I = \frac{F_{s}}{2 \cdot \tau_{beam}} \cdot \left(\frac{D^{2}}{2} - y^{2}\right) = 0.0162 \, \text{m}^{4} = \frac{4.8 \, \text{kN}}{2 \cdot 6 \, \text{MPa}} \cdot \left(\frac{9000 \, \text{mm}}{2} - 5 \, \text{mm}^{2}\right)$$


1.9) Outer Depth of I section given Shear Stress in Lower Edge of Flange Formula 🗂

$$D = \sqrt{\frac{8 \cdot I}{F_S} \cdot \tau_{beam} + d^2}$$

1.10) Outer Depth of I-section given Shear Stress in Flange Formula 🕝



1.11) Shear Force in Flange of I-section Formula C

$$F_{s} = \frac{2 \cdot I \cdot \tau_{beam}}{\frac{D^{2}}{2} - y^{2}}$$

Formula Example with Units
$$F_{S} = \frac{2 \cdot I \cdot \tau_{beam}}{\frac{D^{2}}{2} \cdot y^{2}} \qquad 0.4978 \, \text{kN} = \frac{2 \cdot 0.00168 \, \text{m}^{4} \cdot 6 \, \text{MPa}}{\frac{9000 \, \text{mm}}{2} \cdot 5 \, \text{mm}}^{2}$$

1.12) Shear Force in Lower Edge of Flange in I-section Formula C

Formula Example with Units
$$F_{S} = \frac{8 \cdot I \cdot \tau_{beam}}{D^{2} - d^{2}}$$

$$0.9981 \, \text{kN} = \frac{8 \cdot 0.00168 \, \text{m}^{4} \cdot 6 \, \text{MPa}}{9000 \, \text{mm}^{2} - 450 \, \text{mm}^{2}}$$

Evaluate Formula 🕝

1.13) Shear Stress in Flange of I-section Formula C

Formula

 $\tau_{beam} = \frac{F_s}{2 \cdot I} \cdot \left(\frac{D^2}{2} - y^2\right) \left| \quad \left| \quad 57.8571 \, \text{MPa} \right| = \frac{4.8 \, \text{kN}}{2 \cdot 0.00168 \, \text{m}^4} \cdot \left(\frac{9000 \, \text{mm}}{2} - 5 \, \text{mm}^2\right) \right|$

Example with Units

Evaluate Formula (

1.14) Shear Stress in Lower Edge of Flange of I-section Formula 🕝

Formula

Example with Units

 $\tau_{beam} = \frac{F_s}{8 \cdot I} \cdot \left(\ D^2 - d^2 \right) \ \left| \ \ 28.8562 \, \text{MPa} \ = \frac{4.8 \, \text{kN}}{8 \cdot 0.00168 \, \text{m}^4} \cdot \left(\ 9000 \, \text{mm}^2 - 450 \, \text{mm}^2 \right) \ \right|$

 $B = \frac{A_{abv}}{\frac{D}{2} - y} \qquad 1.4238 \,\text{mm} = \frac{6400 \,\text{mm}^2}{\frac{9000 \,\text{mm}}{2} - 5 \,\text{mm}}$

1.15) Width of Section given Area above Considered Section of Flange Formula 🕝 Evaluate Formula (

Evaluate Formula (

2) Shear Stress Distribution in Web Formulas [7]

2.1) Distance of Considered Level from Neutral Axis at Junction of Top of Web Formula [7]

 $y = \frac{d}{2}$ 225 mm = $\frac{450 \text{ mm}}{2}$

Evaluate Formula (

2.2) Maximum Shear Force in I Section Formula

 $F_{S} = \frac{\tau_{max} \cdot I \cdot b}{\frac{B \cdot \left(D^{2} \cdot d^{2}\right)}{8} + \frac{b \cdot d^{2}}{8}} \left| \quad \right| \quad 0.1281 \, \text{kN} \\ = \frac{11 \, \text{MPa} \cdot 0.00168 \, \text{m}^{4} \cdot 7 \, \text{mm}}{\frac{100 \, \text{mm} \cdot \left(9000 \, \text{mm}^{2} \cdot 450 \, \text{mm}^{2}\right)}{8} + \frac{7 \, \text{mm} \cdot 450 \, \text{mm}^{2}}{9}} \right| \quad \left| \quad 0.1281 \, \text{kN} \right| = \frac{11 \, \text{MPa} \cdot 0.00168 \, \text{m}^{4} \cdot 7 \, \text{mm}}{\frac{100 \, \text{mm} \cdot \left(9000 \, \text{mm}^{2} \cdot 450 \, \text{mm}^{2}\right)}{8} + \frac{7 \, \text{mm} \cdot 450 \, \text{mm}^{2}}{9}} \right| \quad \left| \quad 0.1281 \, \text{kN} \right| = \frac{11 \, \text{MPa} \cdot 0.00168 \, \text{m}^{4} \cdot 7 \, \text{mm}}{\frac{100 \, \text{mm} \cdot \left(9000 \, \text{mm}^{2} \cdot 450 \, \text{mm}^{2}\right)}{8} + \frac{7 \, \text{mm} \cdot 450 \, \text{mm}^{2}}{9}} \right| \quad \left| \quad 0.1281 \, \text{kN} \right| = \frac{11 \, \text{MPa} \cdot 0.00168 \, \text{m}^{4} \cdot 7 \, \text{mm}}{\frac{100 \, \text{mm} \cdot \left(9000 \, \text{mm}^{2} \cdot 450 \, \text{mm}^{2}\right)}{8}} + \frac{7 \, \text{mm} \cdot 450 \, \text{mm}^{2}}{9} \right| \quad \left| \quad 0.1281 \, \text{kN} \right| = \frac{11 \, \text{MPa} \cdot 0.00168 \, \text{m}^{4} \cdot 7 \, \text{mm}}{\frac{100 \, \text{mm} \cdot \left(9000 \, \text{mm}^{2} \cdot 450 \, \text{mm}^{2}\right)}{8}} + \frac{7 \, \text{mm} \cdot 450 \, \text{mm}^{2}}{9} \right| \quad \left| \quad 0.1281 \, \text{kN} \right| = \frac{11 \, \text{MPa} \cdot 0.00168 \, \text{m}^{4} \cdot 7 \, \text{mm}}{\frac{100 \, \text{mm} \cdot \left(9000 \, \text{mm}^{2} \cdot 450 \, \text{mm}^{2}\right)}{8}} + \frac{10 \, \text{mm}^{2} \cdot 450 \, \text{mm}^{2}}{9} \right| \quad \left| \quad 0.1281 \, \text{kN} \right| = \frac{11 \, \text{MPa} \cdot 0.00168 \, \text{m}^{4} \cdot 7 \, \text{mm}}{\frac{100 \, \text{mm}^{2} \cdot 450 \, \text{mm}^{2}}{9}} + \frac{10 \, \text{mm}^{2} \cdot 450 \, \text{mm}^{2}}{9} \right| \quad \left| \quad 0.1281 \, \text{kN} \right| = \frac{11 \, \text{mm}^{2} \cdot 450 \, \text{mm}^{2}}{9} + \frac{10 \, \text{mm}^{2} \cdot 450 \, \text{mm}^{2}}$

Example with Units

Evaluate Formula [

2.3) Maximum Shear Stress in I Section Formula C

Formula

Evaluate Formula 🕝

 $\tau_{\text{max}} = \frac{F_{\text{S}}}{I \cdot b} \cdot \left(\frac{B \cdot \left(D^2 - d^2\right)}{8} + \frac{b \cdot d^2}{8} \right)$

 $412.3045\,\text{MPa} \; = \frac{4.8\,\text{kN}}{0.00168\,\text{m}^4\,\cdot\,7\,\text{mm}} \cdot \left(\; \frac{100\,\text{mm}\,\cdot\left(\;9000\,\text{mm}^{\;2}\,\cdot\,450\,\text{mm}^{\;2}\right)}{8} \; + \; \frac{7\,\text{mm}\,\cdot\,450\,\text{mm}^{\;2}}{8} \; \right) \; \left| \; \frac{100\,\text{mm}\,\cdot\left(\;9000\,\text{mm}^{\;2}\,\cdot\,450\,\text{mm}^{\;2}\right)}{8} \; + \; \frac{7\,\text{mm}\,\cdot\,450\,\text{mm}^{\;2}}{8} \; \right| \; \left| \; \frac{100\,\text{mm}\,\cdot\left(\;9000\,\text{mm}^{\;2}\,\cdot\,450\,\text{mm}^{\;2}\right)}{8} \; + \; \frac$

2.4) Moment of Flange Area about Neutral Axis Formula 🕝

$$I = \frac{B \cdot \left(D^2 - d^2\right)}{C}$$

Evaluate Formula (

Evaluate Formula (

$$I = \frac{B \cdot (D^2 - d^2)}{8}$$

$$1.01 \, \text{m}^4 = \frac{100 \, \text{mm} \cdot (9000 \, \text{mm}^2 - 450 \, \text{mm}^2)}{8}$$

2.5) Moment of Inertia of I-Section given Maximum Shear Stress and Force Formula 🕝

$$I = \frac{F_s}{\tau_{beam} \cdot b} \cdot \left(\frac{B \cdot \left(D^2 - d^2\right)}{8} + \frac{b \cdot d^2}{8} \right)$$

Example with Units

$$0.1154\,\text{m}^4 = \frac{4.8\,\text{kN}}{6\,\text{MPa}\,\cdot7\,\text{mm}} \cdot \left(\frac{100\,\text{mm}\,\cdot\left(\,9000\,\text{mm}^{\,\,2}\,\cdot\,450\,\text{mm}^{\,\,2}\,\right)}{8} + \frac{7\,\text{mm}\,\cdot450\,\text{mm}^{\,\,2}}{8}\right)$$

2.6) Moment of Inertia of I-Section given Shear Stress of Web Formula [7]

$$I = \frac{F_s}{\tau_{beam} \cdot b} \cdot \left(\frac{B}{8} \cdot \left(D^2 - d^2\right) + \frac{b}{2} \cdot \left(\frac{d^2}{4} - y^2\right)\right)$$

Example with Units

$$0.1154\,\text{m}^{_{4}} = \frac{4.8\,\text{kN}}{6\,\text{MPa}\,\cdot7\,\text{mm}}\cdot\left(\frac{100\,\text{mm}}{8}\cdot\left(9000\,\text{mm}^{^{2}}-450\,\text{mm}^{^{2}}\right) + \frac{7\,\text{mm}}{2}\cdot\left(\frac{450\,\text{mm}^{^{2}}}{4}-5\,\text{mm}^{^{2}}\right)\right)$$

2.7) Moment of Inertia of Section given Shear Stress at Junction of Top of Web Formula C

Evaluate Formula C

Evaluate Formula (

Evaluate Formula

$$I = \frac{F_{s} \cdot B \cdot \left(D^{2} - d^{2}\right)}{8 \cdot \tau_{beam} \cdot b} \quad \boxed{0.1154_{m^{4}} = \frac{4.8_{kN} \cdot 100_{mm} \cdot \left(9000_{mm}^{2} - 450_{mm}^{2}\right)}{8 \cdot 6_{MPa} \cdot 7_{mm}}}$$

2.8) Moment of Shaded Area of Web about Neutral Axis Formula 🕝

$$I = \frac{b}{2} \cdot \left(\frac{d^2}{4} - y^2\right)$$

$$I = \frac{b}{2} \cdot \left(\frac{d^2}{4} - y^2\right) \left[0.0002 \, m^4 = \frac{7 \, mm}{2} \cdot \left(\frac{450 \, mm^2}{4} - 5 \, mm^2\right) \right]$$

2.9) Shear Force at Junction of Top of Web Formula C

 $F_{s} = \frac{8 \cdot I \cdot b \cdot \tau_{beam}}{B \cdot \left(D^{2} - d^{2}\right)} \left[0.0699_{kN} = \frac{8 \cdot 0.00168_{m^{4}} \cdot 7_{mm} \cdot 6_{MPa}}{100_{mm} \cdot \left(9000_{mm}^{2} - 450_{mm}^{2}\right)} \right]$

Example with Units

Evaluate Formula (

2.10) Shear Force in Web Formula C

 $F_{s} = \frac{I \cdot b \cdot \tau_{beam}}{\frac{B \cdot \left(D^{2} - d^{2}\right)}{g} + \frac{b}{2} \cdot \left(\frac{d^{2}}{4} - y^{2}\right)}$

Evaluate Formula

$$0.0699_{\text{kN}} = \frac{0.00168_{\text{m}^4} \cdot 7_{\text{mm}} \cdot 6_{\text{MPa}}}{\frac{100_{\text{mm}} \cdot \left(9000_{\text{mm}}^2 \cdot 450_{\text{mm}}^2\right)}{8} + \frac{7_{\text{mm}}}{2} \cdot \left(\frac{450_{\text{mm}}^2}{4} - 5_{\text{mm}}^2\right)}$$

2.11) Shear Stress at Junction of Top of Web Formula 🕝

Example with Units

Evaluate Formula (

Formula

 $\tau_{beam} = \frac{F_s \cdot B \cdot \left(\ D^2 - d^2 \right)}{8 \cdot I \cdot b} \ \left| \ 412.2321 \, \text{MPa} \ = \frac{4.8 \, \text{kN} \, \cdot 100 \, \text{mm} \, \cdot \left(\ 9000 \, \text{mm}^{\ 2} - 450 \, \text{mm}^{\ 2} \right)}{8 \cdot 0.00168 \, \text{m}^4 \, \cdot 7 \, \text{mm}} \right|$

2.12) Shear Stress in Web Formula 🕝

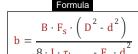
Formula

Evaluate Formula [

$$\tau_{beam} = \frac{F_s}{I \cdot b} \cdot \left(\frac{B}{8} \cdot \left(D^2 - d^2 \right) + \frac{b}{2} \cdot \left(\frac{d^2}{4} - y^2 \right) \right)$$

Example with Units

$$412.3044 \, \text{MPa} = \frac{4.8 \, \text{kN}}{0.00168 \, \text{m}^4 \cdot 7 \, \text{mm}} \cdot \left(\frac{100 \, \text{mm}}{8} \cdot \left(9000 \, \text{mm}^2 - 450 \, \text{mm}^2\right) + \frac{7 \, \text{mm}}{2} \cdot \left(\frac{450 \, \text{mm}^2}{4} - 5 \, \text{mm}^2\right)\right)$$


2.13) Thickness of Web Formula C

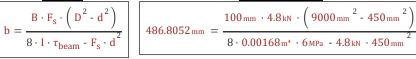
Example with Units

Evaluate Formula

$$b = \frac{2 \cdot I}{\frac{d^2}{4} - y^2} \qquad 66.4032 \,\text{mm} = \frac{2 \cdot 0.00168 \,\text{m}^4}{\frac{450 \,\text{mm}}{4} - 5 \,\text{mm}^2}$$

2.14) Thickness of Web given Maximum Shear Stress and Force Formula 🕝

Example with Units
$$486.8052 \, \text{mm} = \frac{100 \, \text{mm} \cdot 4.8 \, \text{kN} \cdot \left(9000 \, \text{mm}^2 - 450 \, \text{mm}^2\right)}{8 \cdot 0.00168 \, \text{m}^4 \cdot 6 \, \text{MPa} - 4.8 \, \text{kN} \cdot 450 \, \text{mm}^2}$$

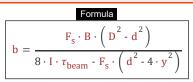

Evaluate Formula (

Evaluate Formula [

Evaluate Formula

Evaluate Formula (

Evaluate Formula 🕝

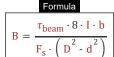


2.15) Thickness of Web given Shear Stress at Junction of Top of Web Formula 🕝

$$b = \frac{F_s \cdot B \cdot \left(D^2 - d^2\right)}{8 \cdot I \cdot \tau_{beam}}$$

Formula Example with Units
$$b = \frac{F_{\text{S}} \cdot B \cdot \left(\text{ D}^2 - \text{d}^2 \right)}{8 \cdot I \cdot \tau_{\text{beam}}} \quad \boxed{ 480.9375 \, \text{mm} = \frac{4.8 \, \text{kN} \cdot 100 \, \text{mm} \cdot \left(9000 \, \text{mm}^2 - 450 \, \text{mm}^2 \right)}{8 \cdot 0.00168 \, \text{m}^4 \cdot 6 \, \text{MPa}}$$

2.16) Thickness of Web given Shear Stress of Web Formula


$$486.8023 \, \text{mm} = \frac{4.8 \, \text{kN} \cdot 100 \, \text{mm} \cdot \left(9000 \, \text{mm}^2 - 450 \, \text{mm}^2\right)}{8 \cdot 0.00168 \, \text{m}^4 \cdot 6 \, \text{MPa} - 4.8 \, \text{kN} \cdot \left(450 \, \text{mm}^2 - 4 \cdot 5 \, \text{mm}^2\right)}$$

2.17) Width of Section given Moment of Flange Area about Neutral Axis Formula 🦵

$$B = \frac{8 \cdot I}{D^2 - d^2}$$

Formula Example with Units
$$B = \frac{8 \cdot I}{D^2 - d^2} = 0.1663 \, \text{mm} = \frac{8 \cdot 0.00168 \, \text{m}^4}{9000 \, \text{mm}^2 - 450 \, \text{mm}^2}$$

2.18) Width of Section given Shear Stress at Junction of Top of Web Formula 🗂

Formula Example with Units
$$B = \frac{\tau_{beam} \cdot 8 \cdot I \cdot b}{F_{s} \cdot \left(D^{2} - d^{2}\right)} = \frac{6 \, \text{MPa} \cdot 8 \cdot 0.00168 \, \text{m}^{4} \cdot 7 \, \text{mm}}{4.8 \, \text{kN} \cdot \left(9000 \, \text{mm}^{2} - 450 \, \text{mm}^{2}\right)}$$

Variables used in list of Shear Stress in I Section Formulas above

- A_{abv} Area of Section above Considered Level (Square Millimeter)
- **b** Thickness of Beam Web (Millimeter)
- **B** Width of Beam Section (Millimeter)
- d Inner Depth of I Section (Millimeter)
- D Outer Depth of I section (Millimeter)
- F_S Shear Force on Beam (Kilonewton)
- **y** Distance from Neutral Axis (Millimeter)
- **y** Distance of CG of Area from NA (Millimeter)

I Moment of Inertia of Area of Section (Meter⁴)

- τ_{heam} Shear Stress in Beam (Megapascal)
- τ_{max} Maximum Shear Stress on Beam (Megapascal)

Constants, Functions, Measurements used in list of Shear Stress in I Section Formulas above

- Functions: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Area in Square Millimeter (mm²)
 Area Unit Conversion
- Measurement: Pressure in Megapascal (MPa)
 Pressure Unit Conversion
- Measurement: Force in Kilonewton (kN)
 Force Unit Conversion
- Measurement: Second Moment of Area in Meter⁴ (m⁴)

Download other Important Shear Stress Distribution for Different Sections PDFs

- Important Shear Stress in Circular Section Formulas (**)
- Important Shear Stress in I Section
 Formulas (*)
- Important Shear Stress in Rectangular Section Formulas

Try our Unique Visual Calculators

- Winning percentage
- LCM of two numbers

Mixed fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/8/2024 | 7:49:22 AM UTC