Important Computation of Runoff Formulas PDF

Formulas Examples with Units

List of 27

Important Computation of Runoff Formulas

1) Rainfall given Run-off Formula 🕝

Evaluate Formu<u>la 🕝</u>

2) Run-off Coefficient given Run-off Formula C

Evaluate Formula

Example with Units
$$6 \, \text{cm} = 0.5 \cdot 12 \, \text{cm}$$

Evaluate Formula

4) Ingli's Formula Formulas (7)

4.1) Rainfall in cm for Ghat Area Formula

$$P_{IC} = \frac{R_{IC} + 30.5}{0.85}$$

Formula Example with Units
$$P_{IC} = \frac{R_{IC} + 30.5}{0.85}$$

$$39.9882 cm = \frac{3.49 cm + 30.5}{0.85}$$

Evaluate Formula

4.2) Rainfall in Inches for Ghat Area Formula

Formula Example with Units
$$R_{PI} = \frac{R_{II} + 12}{0.85}$$

$$21.6471 \text{ in } = \frac{6.4 \text{ in } + 12}{0.85}$$

4.3) Run-off in cm for Ghat Area Formula 🕝

Formula Example with Units
$$R_{IC} = \left(\ 0.85 \cdot P_{IC} \ \right) - 30.5$$

$$3.5 \, cm = \left(\ 0.85 \cdot 40 \, cm \ \right) - 30.5$$

Evaluate Formula

4.4) Run-off in Cm for Non Ghat Area Formula

 $R_{IC} = \left(\frac{P_{IC} - 17.8}{254}\right) \cdot P_{IC} \left| \quad 3.4961 \, \text{cm} \right| = \left(\frac{40 \, \text{cm} - 17.8}{254}\right) \cdot 40 \, \text{cm}$

Example with Units

Evaluate Formula (

4.5) Run-off in Inches for Ghat Area Formula

 $R_{II} = (0.85 \cdot R_{PI}) - 12$ 8.4 in = (0.85 \cdot 24 in) - 12

Example with Units

Evaluate Formula

4.6) Run-off in Inches for Non Ghat Area Formula

Formula

Example with Units

 $R_{II} = \left(\frac{R_{PI} - 7}{100}\right) \cdot R_{PI}$ $4.08 \text{ in } = \left(\frac{24 \text{ in } - 7}{100}\right) \cdot 24 \text{ in}$

Evaluate Formula (

5) Khosla's Formula Formulas 🕝

5.1) Mean Temperature in Entire Catchment given Run-off Formula 🕝

5.2) Mean Temperature in Entire Catchment given Run-off in cm Formula 🕝

 $T_{f} = ((P_{cm} - R_{KC}) \cdot 3.74) + 32$ $38.0214 \cdot F = ((12 \cdot cm - 10.39 \cdot cm) \cdot 3.74) + 32$

Evaluate Formula

Evaluate Formula (

5.3) Rainfall in cm by Khosla's Formula Formula 🕝

Formula

Example with Units

Evaluate Formula [

 $P_{cm} = R_{KC} + \left(\frac{T_f - 32}{3.74}\right) \left[11.9943 \text{ cm} = 10.39 \text{ cm} + \left(\frac{38 \text{ °F} - 32}{3.74}\right) \right]$

5.4) Rainfall in Inches by Khosla's Formula Formula C

Formula

Example with Units

Evaluate Formula 🕝

 $R_{PI} = R_{KI} + \left(\frac{T_f - 32}{9.5}\right)$ | 23.9987 in = 23.75 in + $\left(\frac{38 \,^{\circ}F - 32}{9.5}\right)$

Evaluate Formula (

$$R_{KC} = P_{cm} - \left(\frac{T_f - 32}{3.74}\right)$$

 $R_{KC} = P_{cm} - \left(\frac{T_f - 32}{3.74}\right) \left| 10.3957_{cm} = 12_{cm} - \left(\frac{38_{F} - 32}{3.74}\right) \right|$

5.6) Run-off in Inches by Khosla's Formula Formula

Evaluate Formula (

 $R_{KI} = R_{PI} - \left(\frac{T_f - 32}{9.5}\right)$ 23.7513 in = 24 in $-\left(\frac{38 \, ^{\circ} \text{F} - 32}{9.5}\right)$

6) Lacey's Formula Formulas 🕝

6.1) Catchment Factor given Run-off in cm by Lacey's Formula Formula 🗂

Evaluate Formula (

 $S = \frac{-304.8 \cdot F_{\text{m}} \cdot R_{\text{LC}}}{R_{\text{LC}} \cdot P_{\text{cm}} - P_{\text{cm}} \cdot P_{\text{cm}}} \left[1.6994 = \frac{-304.8 \cdot 1.48 \cdot 0.519 \, \text{cm}}{0.519 \, \text{cm} \cdot 12 \, \text{cm} \cdot 12 \, \text{cm}} \right]$

6.2) Catchment Factor given Run-off in Inches by Lacey's Formula Formula 🕝

Evaluate Formula (

 $S = \frac{-120 \cdot F_{\text{m}} \cdot R_{\text{LI}}}{R_{\text{LI}} \cdot R_{\text{DI}} \cdot R_{\text{DI}} \cdot R_{\text{DI}}} = \frac{-120 \cdot 1.48 \cdot 8.84_{\text{in}}}{8.84_{\text{in}} \cdot 24_{\text{in}} \cdot 24_{\text{in}} \cdot 24_{\text{in}}}$

6.3) Monsoon Duration Factor given Run-off in cm by Lacey's Formula Formula 🕝

Formula

Evaluate Formula [

 $F_{\rm m} = \frac{S \cdot \left(R_{\rm LC} \cdot P_{\rm cm} - P_{\rm cm}^{2}\right)}{-304.8 \cdot R_{\rm LC}} \left[1.4806 = \frac{1.70 \cdot \left(0.519 \, \text{cm} \cdot 12 \, \text{cm} - 12 \, \text{cm}^{2}\right)}{-304.8 \cdot 0.519 \, \text{cm}} \right]$

6.4) Monsoon Duration Factor given Run-off in Inches by Lacey's Formula Formula 🕝

Evaluate Formula

 $F_{m} = \frac{S \cdot \left(\left. R_{LI} \cdot R_{PI} - R_{PI} \right.^{2} \right)}{-120 \cdot R_{LI}} \left[1.481 = \frac{1.70 \cdot \left(\left. 8.84 \, \mathrm{in} \, \cdot \, 24 \, \mathrm{in} \, - \, 24 \, \mathrm{in} \, \right.^{2} \right)}{-120 \cdot 8.84 \, \mathrm{in}} \right]$

6.5) Run-off in cm by Lacey's Formula Formula [7]

Formula

Example with Units

Evaluate Formula 🕝

 $R_{LC} = \frac{P_{cm}}{1 + \frac{304.8 \cdot F_m}{P_{cm} \cdot S}} \left| \quad 0.5192 \,_{cm} \right| = \frac{12 \,_{cm}}{1 + \frac{304.8 \cdot 1.48}{12 \,_{cm} \cdot 1.70}}$

$$R_{LI} = \frac{R_{PI}}{1 + \frac{120 \cdot F_m}{P_{D} \cdot S}}$$

$$8.8438 \text{ in } = \frac{24 \text{ in}}{1 + \frac{120 \cdot 1.48}{24 \text{ in} \cdot 1.70}}$$

Example with Units

Evaluate Formula (

7) Parker's Formula Formulas 🕝

7.1) Rainfall for Catchment in British Isles Formula 🕝

Formula $R_{PI} = \frac{R_{PRI} + 14}{0.94} \left| 22.353 \text{ in } = \frac{15.5 \text{ in } + 14}{0.94} \right|$

Example with Units

Evaluate Formula (

7.2) Rainfall for Catchment in East USA Formula []

Formula

Example with Units $R_{PI} = \frac{R_{PRI} + 16.5}{0.80}$ | 27.4951_{in} = $\frac{15.5_{in} + 16.5}{0.80}$ Evaluate Formula (

7.3) Rainfall for Catchment in Germany Formula 🕝

Example with Units $R_{PI} = \frac{R_{PRI} + 16}{0.94} \left| \quad 23.1907_{in} = \frac{15.5_{in} + 16}{0.94} \right|$ Evaluate Formula (

7.4) Run-off for Catchment in British Isles Formula []

Formula

Example with Units $R_{PRI} = \left(0.94 \cdot R_{PI} \right) - 14 \left| \begin{array}{c} 17.0482 \, \text{in} \\ \end{array} \right. = \left(0.94 \cdot 24 \, \text{in} \right) - 14 \left| \begin{array}{c} \end{array} \right.$ Evaluate Formula (

7.5) Run-off for Catchment in East USA Formula C

Formula $R_{PRI} = \left(0.80 \cdot R_{PI}\right) - 16.5$

Example with Units $12.7039 \, \text{in} = (0.80 \cdot 24 \, \text{in}) - 16.5$ Evaluate Formula C

7.6) Run-off for Catchment in Germany Formula C

Formula

Example with Units

Evaluate Formula 🕝

 $R_{PRI} = (0.94 \cdot R_{PI}) - 16$ | $16.2608 in = (0.94 \cdot 24 in) - 16$

Variables used in list of Computation of Runoff Formulas above

- C_r Runoff Coefficient
- F_m Monsoon Duration Factor
- P_{cm} Rainfall Depth (Centimeter)
- P_{IC} Rainfall Depth in CM for Ingli's Formula (Centimeter)
- R Runoff Depth (Centimeter)
- R_{IC} Runoff Depth in CM for Inglis' Formula (Centimeter)
- R_{II} Runoff Depth in Inches for Inglis' Formula
 (Inch)
- R_{KC} Runoff Depth in CM for Khosla's Formula (Centimeter)
- R_{KI} Runoff Depth in Inches for Khosla's Formula (Inch)
- R_{LC} Runoff Depth in CM for Lacey's Formula (Centimeter)
- R_{LI} Runoff Depth in Inches for Lacey's Formula (Inch)
- Rpi Rainfall Depth in Inches (Inch)
- R_{PRI} Runoff Depth in Inches for Parker's Formula (Inch)
- S Catchment Factor
- Tf Temperature (Fahrenheit)

Constants, Functions, Measurements used in list of Computation of Runoff Formulas above

- Measurement: Length in Centimeter (cm), Inch (in)
 - Length Unit Conversion
- Measurement: Temperature in Fahrenheit (°F)
 Temperature Unit Conversion

Download other Important Surface Water Hydrology PDFs

- Important Computation of Runoff Formulas (*)
- Important Evaporation and Transpiration Formulas
- Important Flood Discharge Formulae
 Formulas (*)
- Important Flood Discharge Method Formulas

Try our Unique Visual Calculators

• M Percentage error

• ECM of three numbers

• \overline Subtract fraction 🕝

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 12:10:16 PM UTC