Fórmulas importantes de forças de amarração Fórmulas PDF

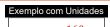
Fórmulas Exemplos com unidades

Lista de 29

Fórmulas importantes de forças de amarração Fórmulas

Avaliar Fórmula 🕝

Avaliar Fórmula 🕝


Avaliar Fórmula 🕝

Avaliar Fórmula

1) Alongamento na linha de amarração dada a rigidez individual da linha de amarração Fórmula 🕝

$$\Delta l_n = \frac{T_{n'}}{k_n}$$

$$\Delta l_n = \frac{T_{n'}}{k_n} \qquad 1600 \, \text{m} = \frac{160 \, \text{kN}}{100.0}$$

2) Alongamento no cabo de amarração dado o alongamento percentual no cabo de amarração Fórmula 🕝

Fórmula

$$\Delta l_{\eta'} = \ln \cdot \left(\frac{\epsilon_m}{100}\right)$$

Exemplo com Unidades

$$\Delta l_{\eta'} = \ln \cdot \left(\frac{\epsilon_m}{100}\right) \qquad 4.999_m = 10_m \cdot \left(\frac{49.99}{100}\right)$$

3) Ângulo da corrente em relação ao eixo longitudinal do navio dado o número de Reynolds Fórmula 🦳

$$\theta_{c} = a\cos\left(\frac{Re_{m} \cdot v'}{V_{c} \cdot l_{wl}}\right)$$

Exemplo com Unidades

$$\theta_{c} = a\cos\left(\frac{Re_{m} \cdot v'}{V_{c} \cdot l_{wl}}\right)$$

$$1.4727 = a\cos\left(\frac{200 \cdot 7.25 st}{728.2461 m/h \cdot 7.32 m}\right)$$

4) Área da superfície molhada do navio Fórmula 🕝

$$S' = \left(1.7 \cdot T \cdot l_{wl}\right) + \left(\frac{35 \cdot D}{T}\right)$$

Exemplo com Unidades

$$583.4059 \,\mathrm{m}^2 = \left(1.7 \cdot 1.68 \,\mathrm{m} \cdot 7.32 \,\mathrm{m}\right) + \left(\frac{35 \cdot 27 \,\mathrm{m}^3}{1.68 \,\mathrm{m}}\right)$$

Fórmula
$$l_{wl} \cdot B$$

Exemplo com Unidades

$$A_{p} = \frac{I_{wl} \cdot B}{0.838} \cdot A_{r} \qquad 20.2654_{m^{2}} = \frac{7.32_{m} \cdot 2_{m}}{0.838} \cdot 1.16$$

6) Área projetada da embarcação acima da linha d'água devido à força de arrasto devido ao vento Fórmula 🕝

Exemplo com Unidades

Avaliar Fórmula 🦳

$$A = \frac{F_D}{0.5 \cdot \rho_{air} \cdot C_{D'} \cdot {V_{10}}^2}$$

$$A = \frac{F_D}{0.5 \cdot \rho_{air} \cdot C_{D'} \cdot V_{10}^{\ \ 2}} \boxed{ 49.9241 \text{m}^2 = \frac{37.0 \text{ N}}{0.5 \cdot 1.225 \text{ kg/m}^2 \cdot 0.0025 \cdot 22 \text{ m/s}}^2}$$

7) Arraste da hélice devido ao arrasto da hélice com eixo travado Fórmula 🕝

Avaliar Fórmula (

$$F_{c, prop} = 0.5 \cdot \rho_{water} \cdot C_{c, prop} \cdot A_{p} \cdot V_{c}^{2} \cdot \cos(\theta_{c})$$

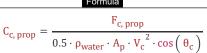
Exemplo com Unidades

$$249.485\,{\scriptscriptstyle N}\,=0.5\cdot 1000\,{\scriptscriptstyle kg/m^3}\,\cdot 1.99\cdot 15\,{\scriptscriptstyle m^2}\cdot 728.2461\,{\scriptscriptstyle m/h}\,^2\cdot \cos\big(\,1.150\,\big)$$

8) Calado da embarcação dado forma de arrasto da embarcação Fórmula 🕝

Fórmula

Avaliar Fórmula 🦳


$$T = \frac{F_{c, form}}{0.5 \cdot \rho_{water} \cdot C_{c, form} \cdot B \cdot V_c^2 \cdot \cos(\theta_c)}$$

$$1.7947 \, \text{m} \, = \frac{0.15 \, \text{kN}}{0.5 \cdot 1000 \, \text{kg/m}^3 \cdot 5 \cdot 2 \, \text{m} \cdot 728.2461 \, \text{m/h}^2 \cdot \cos \left(\, 1.150 \, \right)}$$

9) Coeficiente de arrasto da hélice dado o arrasto da hélice Fórmula 🗂

Fórmula

Avaliar Fórmula 🦳

Exemplo com Unidades

$$1.9861 = \frac{249 \,\text{N}}{0.5 \cdot 1000 \,\text{kg/m}^3 \cdot 15 \,\text{m}^2 \cdot 728.2461 \,\text{m/h}^2 \cdot \cos\left(1.150\right)}$$

10) Coeficiente de arrasto de forma dado o arrasto de forma da embarcação Fórmula 🕝

Avaliar Fórmula (

Avaliar Fórmula (

$$C_{c, form} = \frac{F_{c, form}}{0.5 \cdot \rho_{water} \cdot B \cdot T \cdot V_c^2 \cdot \cos(\theta_c)}$$

Exemplo com Unidades

$$5.3414 = \frac{0.15 \,\text{kN}}{0.5 \cdot 1000 \,\text{kg/m}^3 \cdot 2 \,\text{m} \cdot 1.68 \,\text{m} \cdot 728.2461 \,\text{m/h}^2 \cdot \cos\left(1.150\right)}$$

11) Coeficiente de arrasto para ventos medido a 10 m dada a força de arrasto devido ao vento Fórmula 🕝

Fórmula
$$\mathsf{C}_{\mathsf{D}'} = \frac{\mathsf{F}_{\mathsf{D}}}{2}$$

$$C_{D'} = \frac{F_D}{0.5 \cdot \rho_{air} \cdot A \cdot V_{10}^{\ 2}} \boxed{ \begin{array}{c} \text{Exemplo com Unidades} \\ \\ 0.0024 = \frac{37.0 \, \text{N}}{0.5 \cdot 1.225 \, \text{kg/m}^3 \cdot 52 \, \text{m}^2 \cdot 22 \, \text{m/s}^{\ 2}} \end{array} }$$

12) Coeficiente de atrito da pele dado o atrito da pele do vaso Fórmula 🕝

$$c_{f} = \frac{F_{c,fric}}{0.5 \cdot \rho_{water} \cdot S \cdot V_{cs}^{2} \cdot \cos\left(\theta_{c}\right)}$$

Exemplo com Unidades

$$0.7605 = \frac{42}{0.5 \cdot 1000 \,\text{kg/m}^3 \cdot 4 \,\text{m}^2 \cdot 0.26 \,\text{m/s}^2 \cdot \cos(1.150)}$$

13) Comprimento da linha d'água da embarcação dado o número de Reynolds Fórmula 🕝

Fórmula
$$l_{wl} = \frac{\text{Re} \cdot v'}{V_c} \cdot \cos(\theta_c)$$

Fórmula Exemplo com Unidades
$$l_{wl} = \frac{\text{Re} \cdot \nu^{'}}{V_{c}} \cdot \cos\left(\theta_{c}\right) \qquad 7.32_{m} = \frac{5000 \cdot 7.25_{st}}{728.2461_{m/h}} \cdot \cos\left(1.150\right)$$

14) Comprimento da linha d'água da embarcação para área de superfície molhada da embarcação Fórmula 🕝

Avaliar Fórmula 🕝

$$l_{wl} = \frac{A_p \cdot 0.838 \cdot A_r}{B}$$

Fórmula Exemplo com Unidades
$$l_{wl} = \frac{A_p \cdot 0.838 \cdot A_r}{B} \qquad 7.2906_{m} = \frac{15\,\text{m}^2\, \cdot 0.838 \cdot 1.16}{2\,\text{m}}$$

Avaliar Fórmula (

16) Deslocamento da embarcação para a área de superfície molhada da embarcação Fórmula

$$D = \frac{\mathbf{T} \cdot \left(\mathbf{S'} - \left(1.7 \cdot \mathbf{T} \cdot \mathbf{l}_{wl} \right) \right)}{35}$$

Avaliar Fórmula (

Exemplo com Unidades

$$27.7965\,^{\text{m}^3} = \frac{1.68\,^{\text{m}} \cdot \left(600\,^{\text{m}^2} - \left(1.7 \cdot 1.68\,^{\text{m}} \cdot 7.32\,^{\text{m}}\right)\right)}{35}$$

17) Força de arrasto devido ao vento Fórmula 🕝

Fórmula

Exemplo com Unidades

Avaliar Fórmula

$$F_{D} = 0.5 \cdot \rho_{air} \cdot C_{D'} \cdot A \cdot V_{10}^{2}$$

$$38.5385\,\text{N} = 0.5 \cdot 1.225\,\text{kg/m}^3 \cdot 0.0025 \cdot 52\,\text{m}^2 \cdot 22\,\text{m/s}^2$$

18) Fricção da pele da embarcação devido ao fluxo de água sobre a área da superfície molhada da embarcação Fórmula 🕝

Fórmula

Avaliar Fórmula 🕝

$$F_{c,fric} = 0.5 \cdot \rho_{water} \cdot c_{f} \cdot S \cdot V_{cs}^{2} \cdot \cos(\theta_{c})$$

Exemplo com Unidades

$$39.7638 = 0.5 \cdot 1000 \, \text{kg/m}^{\text{3}} \, \cdot 0.72 \cdot 4 \, \text{m}^{\text{2}} \, \cdot 0.26 \, \text{m/s}^{\text{2}} \cdot \text{cos} \left(\, 1.150 \, \right)$$

19) Massa da Embarcação dada a Massa Virtual da Embarcação Fórmula 🗂

Fórmula Exemplo com Unidades
$$m = m_{_{\hspace{-.1em} V}} - m_{_{\hspace{-.1em} a}} \qquad \qquad 80\,{_{\hspace{-.1em} kN}} = 100\,{_{\hspace{-.1em} kN}} \, - 20\,{_{\hspace{-.1em} kN}}$$

Avaliar Fórmula C

20) Massa Virtual da Embarcação Fórmula 🕝

Fórmula

Exemplo com Unidades

Avaliar Fórmula 🕝

$$m_v = m + m_a$$

 $100 \, \text{kN} = 80 \, \text{kN} + 20 \, \text{kN}$

21) Número de Reynolds dado Coeficiente de Fricção da Pele Fórmula 🕝

Exemplo com Unidades

 $Re_{s} = \frac{V_{c} \cdot l_{wl} \cdot \cos\left(\theta_{c}\right)}{v'} \mid 834.31 = \frac{728.2461 \, m/h \, \cdot 7.32 \, m \, \cdot \cos\left(1.150\,\right)}{7.25 \, st}$

22) Período Natural Não Amortecido da Embarcação Fórmula 🕝

 $T_{n} = 2 \cdot \pi \cdot \left(\sqrt{\frac{m_{v}}{k_{tot}}} \right) \left[0.1745 \, h = 2 \cdot 3.1416 \cdot \left(\sqrt{\frac{100 \, kN}{10.0 \, N/m}} \right) \right]$

Exemplo com Unidades

Avaliar Fórmula (

Avaliar Fórmula (

23) Relação de área dada área de pá expandida ou desenvolvida da hélice Fórmula 🕝

 $A_{r} = l_{wl} \cdot \frac{B}{A_{p} \cdot 0.838}$ 1.1647 = 7.32 m \cdot \frac{2 m}{15 m^{2} \cdot 0.838}

Avaliar Fórmula (Exemplo com Unidades

24) Rigidez Individual da Linha de Amarração Fórmula 🕝

 $k_{n'} = \frac{T_{n'}}{\Delta l_{n'}}$ 32064.1283 = $\frac{160 \, \text{kN}}{4.99 \, \text{m}}$

Fórmula Exemplo com Unidades $T_{n'} = \Delta l_n \cdot k_n \qquad 160 \, \text{kN} = 1600 \, \text{m} \cdot 100.0$

25) Tensão Axial ou Carga dada a Rigidez Individual da Linha de Amarração Fórmula 🕝

Avaliar Fórmula 🕝

Avaliar Fórmula 🕝

Avaliar Fórmula 🕝

26) Velocidade atual média para arrasto de forma da embarcação Fórmula 🕝

 $V = \sqrt{\frac{F_{c, form}}{0.5} \cdot \rho_{water} \cdot C_{c, form} \cdot B \cdot T \cdot \cos(\theta_c)}$

Exemplo com Unidades

 $1434.8438\,\text{m/s} = \sqrt{\frac{0.15\,\text{kN}}{0.5} \cdot 1000\,\text{kg/m}^3 \cdot 5 \cdot 2\,\text{m} \cdot 1.68\,\text{m} \cdot \cos\left(\ 1.150\ \right)}$

27) Velocidade do Vento na Elevação Padrão de 10 m dada a Velocidade na Elevação Desejada Fórmula 🕝

Exemplo com Unidades

Avaliar Fórmula 🕝

$$V_{10} = \frac{V_z}{(z_z)^{0.3}}$$

$$20.3662 \,\mathrm{m/s} = \frac{26.5 \,\mathrm{m/s}}{\left(109.50 \,\mathrm{m}\right)^{0}}$$

28) Velocidade média atual dada o número de Reynolds Fórmula 🕝

Exemplo com Unidades

$$V_{c} = \frac{Re \cdot v'}{l_{wl}} \cdot \cos(\theta_{c})$$

$$728.2461 \,\text{m/h} = \frac{5000 \cdot 7.25 \,\text{st}}{7.32 \,\text{m}} \cdot \cos \left(\ 1.150 \ \right)$$

29) Velocidade na elevação desejada Fórmula 🕝

Fórmula

Exemplo com Unidades

Avaliar Fórmula 🕝

$$V_{z} = V_{10} \cdot \left(\frac{z}{10}\right)^{0.11}$$

$$V_z = V_{10} \cdot \left(\frac{z}{10}\right)^{0.11}$$
 $28.6258 \,\text{m/s} = 22 \,\text{m/s} \cdot \left(\frac{109.50 \,\text{m}}{10}\right)^{0.11}$

Variáveis usadas na lista de Fórmulas importantes de forças de amarração acima

- A Área Projetada da Embarcação (Metro quadrado)
- A_p Área de pá expandida ou desenvolvida de uma hélice (Metro quadrado)
- A_r Proporção de área
- B Viga da embarcação (Metro)
- C_{c. form} Coeficiente de arrasto de formulário
- C_{c, prop} Coeficiente de arrasto da hélice
- C_D. Coeficiente de arrasto
- C_f Coeficiente de Fricção da Pele
- D Deslocamento de uma embarcação (Metro cúbico)
- F_{c, form} Forma de arrasto de uma embarcação (Kilonewton)
- F_{c, prop} Arrasto da hélice da embarcação (Newton)
- F_{c.fric} Fricção da Pele de um Vaso
- F_D Força de arrasto (Newton)
- $\mathbf{k_n}$ Rigidez individual de um cabo de amarração
- kn Rigidez do cabo de amarração individual
- k_{tot} Constante de Primavera Efetiva (Newton por metro)
- I_{wl} Comprimento da linha d'água de uma embarcação (Metro)
- In Comprimento da linha de amarração (Metro)
- m Massa de um navio (Kilonewton)
- m_a Massa da embarcação devido a efeitos inerciais (Kilonewton)
- m_v Missa Virtual do Navio (Kilonewton)
- Re Número de Reynolds
- Re_m Número de Reynolds para forças de amarração
- Re_s Número de Reynolds para fricção cutânea
- **S** Área de superfície molhada (Metro quadrado)

Constantes, funções, medidas usadas na lista de Fórmulas importantes de forças de amarração acima

- constante(s): pi,
 3.14159265358979323846264338327950288
 Constante de Arquimedes
- Funções: acos, acos(Number)
 A função cosseno inverso é a função inversa da função cosseno. É a função que toma uma razão como entrada e retorna o ângulo cujo cosseno é igual a essa razão.
- Funções: cos, cos(Angle)
 O cosseno de um ângulo é a razão entre o lado adjacente ao ângulo e a hipotenusa do triângulo.
- Funções: sqrt, sqrt(Number)
 Uma função de raiz quadrada é uma função que recebe um número não negativo como entrada e retorna a raiz quadrada do número de entrada fornecido
- Medição: Comprimento in Metro (m)
 Comprimento Conversão de unidades (
- Medição: Tempo in Hora (h)
 Tempo Conversão de unidades
- Medição: Volume in Metro cúbico (m³)
 Volume Conversão de unidades (
- Medição: Área in Metro quadrado (m²)
 Área Conversão de unidades
- Medição: Velocidade in Metro por hora (m/h), Metro por segundo (m/s)
 Velocidade Conversão de unidades
- Medição: Força in Kilonewton (kN), Newton (N)
 Força Conversão de unidades
- Medição: Tensão superficial in Newton por metro (N/m)
 - Tensão superficial Conversão de unidades
- Medição: Viscosidade Cinemática in Stokes (St)
 Viscosidade Cinemática Conversão de unidades
- Medição: Densidade in Quilograma por Metro Cúbico (kg/m³)
 - Densidade Conversão de unidades 🗂

- S['] Área de superfície molhada da embarcação (Metro quadrado)
- T Calado do navio (Metro)
- T_n Período natural não amortecido de uma embarcação (Hora)
- T_{n¹} Tensão axial ou carga em um cabo de amarração (Kilonewton)
- T Calado na embarcação (Metro)
- **V** Velocidade atual litorânea (Metro por segundo)
- V₁₀ Velocidade do vento a uma altura de 10 m (Metro por segundo)
- V_c Velocidade média atual (Metro por hora)
- V_{cs} Velocidade Média Atual para Fricção da Pele (Metro por segundo)
- V_z Velocidade na elevação desejada z (Metro por segundo)
- **z** Elevação Desejada (Metro)
- ΔI_n Alongamento da linha de amarração (Metro)
- ΔI_n· Alongamento no Cabo de Amarração (Metro)
- ε_m Alongamento percentual em um cabo de amarração
- θ_c Ângulo da Corrente
- v Viscosidade Cinemática em Stokes (Stokes)
- ρ_{air} Densidade do ar (Quilograma por Metro Cúbico)
- Pwater Densidade da Água (Quilograma por Metro Cúbico)

Baixe outros PDFs de Importante Hidrodinâmica do porto

- Fórmulas importantes de oscilação portuária Fórmulas
- Importante Coeficiente de transmissão de ondas e amplitude da superfície da água Fórmulas

Experimente nossas calculadoras visuais exclusivas

Por favor, COMPARTILHE este PDF com alguém que precise dele!

Este PDF pode ser baixado nestes idiomas

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 7:03:07 AM UTC