Important Transfert de chaleur Formules PDF

Formules Exemples avec unités

Liste de 21

Important Transfert de chaleur Formules

1) Capacité de réfrigération compte tenu de la charge sur le condenseur Formule 🕝

Exemple avec Unités

 $R_F = Q_C - W$ 1000 J/min = 1600 J/min - 600 J/min

2) Charge sur le condenseur Formule C

Formule Exemple avec Unités $Q_C = R_E + W \qquad 1600 \ \text{J/min} = 1000 \ \text{J/min} + 600 \ \text{J/min}$

Évaluer la formule

3) Coefficient global de transfert de chaleur pour la condensation sur la surface verticale Formule (

Formule

Évaluer la formule (

$$U = 0.943 \cdot \left(\frac{\left(\left.k^{3}\right) \cdot \left(\left.\rho_{f} - \rho v\right.\right) \cdot g \cdot h_{fg}}{\mu_{f} \cdot H \cdot \Delta T}\right)^{\frac{1}{4}}$$

Exemple avec Unités

$$641.1352\,\text{W/m}^{2*}\text{K} \ = \ 0.943 \cdot \left(\frac{\left(\ 10.18\,\text{W/(m*K)}^{\ 3} \right) \cdot \left(\ 10\,\text{kg/m}^{3} \ - \ 0.002\,\text{kg/m}^{3} \ \right) \cdot 9.8\,\text{m/s}^{2} \cdot 2260\,\text{kJ/kg}}{0.029\,\text{N*s/m}^{2} \cdot 1300\,\text{mm} \cdot 29\,\text{K}} \right)^{\frac{1}{4}}$$

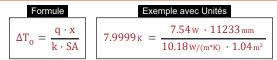
4) Coefficient moyen de transfert de chaleur pour la condensation de vapeur à l'extérieur des tubes horizontaux de diamètre D Formule C

Évaluer la formule 🕝

$$\mathbf{h}^{-} = 0.725 \cdot \left(\frac{\left(\ \mathbf{k}^{3} \right) \cdot \left(\ \boldsymbol{\rho}_{f}^{\ 2} \right) \cdot \mathbf{g} \cdot \mathbf{h}_{fg}}{\mathbf{N} \cdot \mathbf{d}_{t} \cdot \boldsymbol{\mu}_{f} \cdot \Delta T} \right)^{\frac{1}{4}}$$

Exemple avec Unités

$$390.5305\,\text{W/m}^{2*}\text{K} \ = 0.725 \cdot \left(\frac{\left(10.18\,\text{W/(m*K)}^{3}\right) \cdot \left(10\,\text{kg/m}^{3}^{2}\right) \cdot 9.8\,\text{m/s}^{2} \, \cdot 2260\,\text{kJ/kg}}{11 \cdot 3000\,\text{mm} \, \cdot 0.029\,\text{N*s/m}^{2} \, \cdot 29\,\text{K}}\right)^{\frac{1}{4}}$$


5) Différence de température globale compte tenu du transfert de chaleur Formule 🕝

Formule Exemple avec Unités
$$\Delta T_o = q \cdot R_{th} \qquad 0.1508 \, \kappa \, = \, 7.54 \, \text{w} \, \cdot \, 0.02 \, \text{K/W}$$

6) Différence de température globale lors du transfert de chaleur du réfrigérant vapeur vers l'extérieur du tube Formule

Formule Exemple avec Unités
$$\Delta T_o = \frac{q}{h \cdot A} \qquad \boxed{0.0114 \kappa = \frac{7.54 w}{13.2 w/m^2 * \kappa \cdot 50 \, m^2}}$$

7) Différence de température globale lorsque le transfert de chaleur a lieu de l'extérieur vers la surface intérieure du tube Formule 🕝

8) Épaisseur du tube lorsque le transfert de chaleur a lieu de l'extérieur vers la surface intérieure du tube Formule 🕝

Formule Exemple avec Unités
$$x = \frac{k \cdot SA \cdot \left(T_2 - T_3\right)}{q} \qquad 11233.1034_{mm} = \frac{10.18 \text{W}/(\text{m*K}) \cdot 1.04 \text{m}^2 \cdot \left(310 \text{ K} - 302 \text{ K}\right)}{7.54 \text{W}}$$

9) Facteur de rejet de chaleur Formule 🕝

Formule Exemple avec Unités
$$HRF = \frac{R_E + W}{R_E} \qquad 1.6 = \frac{1000 \, \text{J/min} + 600 \, \text{J/min}}{1000 \, \text{J/min}}$$

10) Facteur de rejet de chaleur donné COP Formule

Formule Exemple

HRF =
$$1 + \left(\frac{1}{\text{COP}_r}\right)$$
 $1.5 = 1 + \left(\frac{1}{2}\right)$

11) Le transfert de chaleur a lieu de la surface extérieure à la surface intérieure du tube Formule

Évaluer la formule 🦳

Évaluer la formule (

Évaluer la formule 🦳

Évaluer la formule (

Évaluer la formule 🕝

$$q = h \cdot A \cdot (T_1 - T_2)$$

Évaluer la formule 🕝

Évaluer la formule (

Évaluer la formule (

Évaluer la formule (

Évaluer la formule (

Évaluer la formule 🕝

Évaluer la formule (

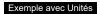
$$q = h \cdot A \cdot (T_1 - T_2)$$

$$-6600 w = 13.2 w/m^{2*} K \cdot 50 m^2 \cdot (300 K - 310 K)$$

13) Résistance thermique globale dans le condenseur Formule 🕝

Formule Exemple avec Unités
$$R_{th} = \frac{\Delta T_{o}}{q} \qquad 0.0265 \, \text{K/W} = \frac{0.2 \, \text{K}}{7.54 \, \text{W}}$$

14) Surface moyenne du tube lorsque le transfert de chaleur a lieu de l'extérieur vers la surface intérieure du tube Formule


Formule

$$SA = \frac{q \cdot x}{k \cdot (T_2 - T_3)}$$

15) Température à la surface extérieure du tube compte tenu du transfert de chaleur Formule

Formule

$$T_2 = \left(\frac{\mathbf{q} \cdot \mathbf{x}}{\mathbf{k} \cdot \mathbf{SA}}\right) + T_3$$

$$T_2 = \left(\frac{q \cdot x}{k \cdot SA}\right) + T_3 \qquad 309.9999 \,\kappa = \left(\frac{7.54 \,\text{w} \cdot 11233 \,\text{mm}}{10.18 \,\text{w}/(\text{m}^*\text{K}) \cdot 1.04 \,\text{m}^2}\right) + 302 \,\kappa$$

16) Température à la surface extérieure du tube fourni Transfert de chaleur Formule 🕝

Formule
$$T_{2} = T_{4} - \left(\begin{array}{c} q \\ \end{array} \right)$$

$$T_2 = T_1 - \left(\frac{q}{h \cdot A}\right)$$

$$299.9886 \,\kappa = 300 \,\kappa - \left(\frac{7.54 \,\mathrm{w}}{13.2 \,\mathrm{w/m^{2*}K} \cdot 50 \,\mathrm{m^2}}\right)$$

17) Température à la surface intérieure du tube compte tenu du transfert de chaleur Formule

$$T_{3} = T_{2} + \left(\frac{q \cdot x}{k \cdot SA}\right) \qquad 317.9999 \,\kappa = 310 \,\kappa + \left(\frac{7.54 \,\text{w} \cdot 11233 \,\text{mm}}{10.18 \,\text{W/(m*K)} \cdot 1.04 \,\text{m}^{2}}\right)$$

18) Température du film de condensation de vapeur de fluide frigorigène compte tenu du transfert de chaleur Formule

Formule

$$T_1 = \left(\frac{q}{h \cdot A}\right) + T_2 \qquad 310.0114 \,\kappa = \left(\frac{7.54 \text{w}}{13.2 \,\text{w/m}^{2*} \text{K} \cdot 50 \,\text{m}^{2}}\right) + 310 \,\kappa$$

$$\frac{7.54\text{w}}{2.2\text{w}/\text{m}^2\text{eV}} + 310\text{k}$$

19) Transfert de chaleur dans le condenseur compte tenu de la résistance thermique globale Formule

$$q = \frac{\Delta T}{R_{th}}$$

$$1450 \text{w} = \frac{29 \text{ K}}{0.02 \text{ K/W}}$$

20) Transfert de chaleur dans le condenseur étant donné le coefficient de transfert de chaleur global Formule (***)

Formule

Évaluer la formule 🦳

$$q = U \cdot SA \cdot \Delta T$$

$$19336.4808 w = 641.13 \, \text{W/m}^{2*} \text{K} \cdot 1.04 \, \text{m}^{2} \cdot 29 \, \text{K}$$

21) Travail effectué par le compresseur compte tenu de la charge sur le condenseur Formule

Formule

Exemple avec Unités

Évaluer la formule 🕝

$$W = Q_C - R_E$$

Variables utilisées dans la liste de Transfert de chaleur Formules cidessus

- A Zone (Mètre carré)
- COP_r Coefficient de performance du réfrigérateur
- **d**_t Diamètre du tube (Millimètre)
- g Accélération due à la gravité (Mètre / Carré Deuxième)
- h Coefficient de transfert de chaleur (Watt par mètre carré par Kelvin)
- **H** Hauteur de la surface (Millimètre)
- h Coefficient moyen de transfert de chaleur (Watt par mètre carré par Kelvin)
- h_{fg} Chaleur latente de vaporisation (Kilojoule par Kilogramme)
- HRF Facteur de reiet de chaleur
- k Conductivité thermique (Watt par mètre par K)
- N Nombre de tubes
- q Transfert de chaleur (Watt)
- **Q**_C Charge sur le condenseur (Joule par minute)
- R_F Capacité de réfrigération (Joule par minute)
- R_{th} Résistance thermique (kelvin / watt)
- SA Superficie (Mètre carré)
- T₁ Température du film de condensation de vapeur (Kelvin)
- T₂ Température de surface extérieure (Kelvin)
- T₃ Température de surface intérieure (Kelvin)
- U Coefficient de transfert de chaleur global (Watt par mêtre carré par Kelvin)
- W Travaux de compresseur effectués (Joule par minute)
- X Épaisseur du tube (Millimètre)
- ΔT Différence de température (Kelvin)
- ΔT_O Différence de température globale (Kelvin)
- µ_f Viscosité du film (Newton seconde par mètre carré)

Constantes, fonctions, mesures utilisées dans la liste des Transfert de chaleur Formules ci-dessus

- La mesure: Longueur in Millimètre (mm)
 Longueur Conversion d'unité
- La mesure: Température in Kelvin (K)
 Température Conversion d'unité
- La mesure: Zone in Mètre carré (m²)

 Zone Conversion d'unité
- La mesure: Accélération in Mètre / Carré
 Deuxième (m/s²)
 Accélération Conversion d'unité
- La mesure: Du pouvoir in Watt (W)
 Du pouvoir Conversion d'unité
- La mesure: La différence de température in Kelvin (K)
 La différence de température Conversion d'unité
- La mesure: Résistance thermique in kelvin / watt (K/W)

Résistance thermique Conversion d'unité

- La mesure: Conductivité thermique in Watt par mètre par K (W/(m*K))
 Conductivité thermique Conversion d'unité
- La mesure: Coefficient de transfert de chaleur in Watt par mètre carré par Kelvin (W/m²*K)
 Coefficient de transfert de chaleur Conversion d'unité
- La mesure: Densité in Kilogramme par mètre cube (kg/m³)
 Densité Conversion d'unité
- La mesure: Chaleur latente in Kilojoule par Kilogramme (kJ/kg)
 - Chaleur latente Conversion d'unité
- La mesure: Taux de transfert de chaleur in Joule par minute (J/min)
 Taux de transfert de chaleur Conversion d'ur

Taux de transfert de chaleur Conversion d'unité

- ρ_f Densité du condensat liquide (Kilogramme par mètre cube)
- pv Densité (Kilogramme par mètre cube)

Téléchargez d'autres PDF Important Réfrigération et climatisation

- Formules
- Important Réfrigération aérienne
 Important Conduits Formules

Essayez nos calculatrices visuelles uniques

- Minversé de pourcentage
- Calculateur PGCD

环 Fraction simple 🗂

Veuillez PARTAGER ce PDF avec quelqu'un qui en a besoin!

Ce PDF peut être téléchargé dans ces langues

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 12:09:03 PM UTC