Important Power Screws Formulas PDF

Formulas Examples with Units

List of 103

Important Power Screws Formulas

1) Acme Thread Formulas 🕝

1.1) Coefficient of Friction of Power Screw given Effort in Lowering Load with Acme Threaded Screw Formula

Evaluate Formula

Evaluate Formula 🦳

Formula $\mu = \frac{P_{lo} + W \cdot tan(\alpha)}{W \cdot sec(0.253) - P_{lo} \cdot sec(0.253) \cdot tan(\alpha)}$

Example with Units

 $120N + 1700N \cdot tan(4.5^{\circ})$ $0.1453 = \frac{1}{1700 \,\text{N} \cdot \sec(0.253) - 120 \,\text{N} \cdot \sec(0.253) \cdot \tan(4.5^\circ)}$

1.2) Coefficient of Friction of Power Screw given Effort in Moving Load with Acme Threaded Screw Formula

Example with Units

$$0.15 = \frac{402 \,\text{N} - 1700 \,\text{N} \cdot \tan(4.5^{\circ})}{\sec\left(14.5 \cdot \frac{3.1416}{180}\right) \cdot (1700 \,\text{N} + 402 \,\text{N} \cdot \tan(4.5^{\circ}))}$$

1.3) Coefficient of Friction of Power Screw given Torque Required in Lifting Load with Acme Thread Formula 🕝

Evaluate Formula

$$\mu = \frac{2 \cdot Mt_{li} - W \cdot d_m \cdot tan(\alpha)}{sec(0.253) \cdot (W \cdot d_m + 2 \cdot Mt_{li} \cdot tan(\alpha))}$$

Formula

Example with Units $0.1504 = \frac{2 \cdot 9265 \,\text{N*mm} - 1700 \,\text{N} \cdot 46 \,\text{mm} \cdot \tan\left(\,4.5^{\circ}\,\right)}{\sec\left(\,0.253\,\right) \cdot \left(\,1700 \,\text{N} \cdot 46 \,\text{mm} + 2 \cdot 9265 \,\text{N*mm} \cdot \tan\left(\,4.5^{\circ}\,\right)}\right)}$

1.4) Coefficient of Friction of Power Screw given Torque Required in Lowering Load with Acme Thread Formula

1.8) Helix Angle of Power Screw given Effort Required in Lifting Load with Acme Threaded Screw Formula 🦳

Example with Units

$$4.4974^{\circ} = a \tan \left(\frac{402 \,\text{N} - 1700 \,\text{N} \cdot 0.15 \cdot \text{sec} \,(\, 0.253\,)}{1700 \,\text{N} + 402 \,\text{N} \cdot 0.15 \cdot \text{sec} \,(\, 0.253\,)} \right)$$

$$\alpha = a \tan \left(\frac{W \cdot \mu \cdot \sec(0.253) - P_{lo}}{W + (P_{lo} \cdot \mu \cdot \sec(0.253))} \right)$$

Example with Units

$$4.7692^{\circ} = a \tan \left(\frac{1700_{N} \cdot 0.15 \cdot \sec(0.253) - 120_{N}}{1700_{N} + (120_{N} \cdot 0.15 \cdot \sec(0.253))} \right)$$

1.10) Helix Angle of Power Screw given Torque Required in Lifting Load with Acme Threaded Screw Formula

1.11) Helix Angle of Power Screw given Torque Required in Lowering Load with Acme Threaded Screw Formula 🕝

Evaluate Formula 🦳

1.12) Load on Power Screw given Effort Required in Lifting Load with Acme Threaded Screw Formula 🕝

Evaluate Formula 🦳

Formula $W = P_{li} \cdot \frac{1 - \mu \cdot sec((0.253)) \cdot tan(\alpha)}{\mu \cdot sec((0.253)) + tan(\alpha)}$

Example with Units

$$1699.6607 \, \mathrm{N} = 402 \, \mathrm{N} \cdot \frac{1 \cdot 0.15 \cdot \mathrm{sec} ((0.253)) \cdot \mathrm{tan} (4.5^{\circ})}{0.15 \cdot \mathrm{sec} ((0.253)) + \mathrm{tan} (4.5^{\circ})}$$

1.13) Load on Power Screw given Effort Required in Lowering Load with Acme Threaded Screw Formula

15933692 _N - 1'	= 120 N ·	$1 + 0.15 \cdot \text{sec}((0.253)) \cdot \tan(4.5^{\circ})$	
1373.3072N - 17		$0.15 \cdot \sec((0.253)) - \tan(4.5^{\circ})$	

1.14) Load on Power Screw given Torque Required in Lifting Load with Acme Threaded Screw Formula 🗖

Evaluate Formula 🦳

 $W = 2 \cdot Mt_{ii} \cdot \frac{1 - \mu \cdot sec((0.253)) \cdot tan(\alpha)}{d_m \cdot (\mu \cdot sec((0.253)) + tan(\alpha))}$

Formula

Example with Units

 $1703.1534_{N} = 2 \cdot 9265_{N*mm} \cdot \frac{1 - 0.15 \cdot \sec((0.253)) \cdot \tan(4.5^{\circ})}{46_{mm} \cdot (0.15 \cdot \sec((0.253)) + \tan(4.5^{\circ}))}$

1.15) Load on Power Screw given Torque Required in Lowering Load with Acme Threaded Screw Formula 🕝

Evaluate Formula

$$W = 2 \cdot Mt_{lo} \cdot \frac{1 + \mu \cdot sec((0.253)) \cdot tan(\alpha)}{d_{m} \cdot (\mu \cdot sec((0.253)) - tan(\alpha))}$$

Formula

Example with Units

 $1708.8307 \text{ N} = 2 \cdot 2960 \text{ N*mm}} \cdot \frac{1 + 0.15 \cdot \text{sec}((0.253)) \cdot \tan(4.5^{\circ})}{46 \text{ mm} \cdot (0.15 \cdot \text{sec}((0.253)) - \tan(4.5^{\circ}))}$

1.16) Mean Diameter of Power Screw given Torque Required in Lowering Load with Acme Threaded Screw Formula

Evaluate Formula

Evaluate Formula

Formula	
$1 + \mu \cdot \sec((0.253)) \cdot \tan(\alpha)$	
$W \cdot (\mu \cdot \sec((0.253)) - \tan(\alpha))$)

 $\begin{aligned} & \text{Example with Units} \\ & 46.2389_{\text{mm}} = 2 \cdot 2960_{\text{N*mm}} \cdot \frac{1 + 0.15 \cdot \sec((0.253)) \cdot \tan(4.5^{\circ})}{1700_{\text{N}} \cdot (0.15 \cdot \sec((0.253)) - \tan(4.5^{\circ}))} \end{aligned}$

1.17) Torque Required in Lifting Load with Acme Threaded Power Screw Formula 🕝 👘

 $Mt_{li} = 0.5 \cdot d_{m} \cdot W \cdot \left(\frac{\mu \cdot \sec((0.253)) + \tan(\alpha)}{1 - \mu \cdot \sec((0.253)) \cdot \tan(\alpha)}\right)$

Example with Units $9247.846_{N*mm} = 0.5 \cdot 46_{mm} \cdot 1700_{N} \cdot \left(\frac{0.15 \cdot \sec((0.253)) + \tan(4.5^{\circ})}{1 - 0.15 \cdot \sec((0.253)) \cdot \tan(4.5^{\circ})}\right)$

1.18) Torque Required in Lowering Load with Acme Threaded Power Screw Formula 🕝

$$Mt_{lo} = 0.5 \cdot d_{m} \cdot W \cdot \left(\frac{\left(\mu \cdot \sec\left(\left(0.253\right)\right)\right) - \tan\left(\alpha\right)}{1 + \left(\mu \cdot \sec\left(\left(0.253\right)\right) \cdot \tan\left(\alpha\right)\right)}\right)$$

Example with Units

 $2944.7036_{N*mm} = 0.5 \cdot 46_{mm} \cdot 1700_{N} \cdot \left(\frac{(0.15 \cdot \sec((0.253))) - \tan(4.5^{\circ})}{1 + (0.15 \cdot \sec((0.253)) \cdot \tan(4.5^{\circ}))}\right)$

2) Torque Requirement in Lowering Load using Square threaded Screws Formulas 🕝

2.1) Coefficient of Friction of Screw Thread given Load Formula 🕝

$$\mu = \frac{P_{lo} + \tan(\alpha) \cdot W}{W - P_{lo} \cdot \tan(\alpha)} \qquad 0.1501 = \frac{120 \times \tan(4.5^{\circ}) \cdot 1700 \times 120}{1700 \times \tan(4.5^{\circ})}$$

2.2) Coefficient of Friction of Screw Thread given Torque Required in Lowering Load Formula

FormulaExample with Units
$$W = \frac{P_{lo}}{\frac{\mu \cdot \tan(\alpha)}{1 + \mu \cdot \tan(\alpha)}}$$
 $1702.9388 \text{ N} = \frac{120 \text{ N}}{\frac{0.15 \cdot \tan(4.5^{\circ})}{1 + 0.15 \cdot \tan(4.5^{\circ})}}$

2.7) Load on power Screw given Torque Required in Lowering Load Formula 🕝

FormulaExample with UnitsEvaluate Formula
$$W = \frac{Mt_{lo}}{0.5 \cdot d_m \cdot \left(\frac{\mu \cdot \tan(\alpha)}{1 + \mu \cdot \tan(\alpha)}\right)}$$
 $1826.3402 \text{ N} = \frac{2960 \text{ N*mm}}{0.5 \cdot 46 \text{ mm} \cdot \left(\frac{0.15 \cdot \tan(4.5^{\circ})}{1 + 0.15 \cdot \tan(4.5^{\circ})}\right)}$

2.8) Mean Diameter of Power Screw given Torque Required in Lowering Load Formula 🕝

FormulaExample with UnitsEvaluate Formula
$$d_m = \frac{Mt_{lo}}{0.5 \cdot W \cdot \left(\frac{\mu - \tan(\alpha)}{1 + \mu \cdot \tan(\alpha)}\right)}$$
49.4186 mm = $\frac{2960 \,\text{N*mm}}{0.5 \cdot 1700 \,\text{N} \cdot \left(\frac{0.15 - \tan(4.5^\circ)}{1 + 0.15 \cdot \tan(4.5^\circ)}\right)}$

3) Collar Friction Formulas 🕝

3.1) Coefficient of Friction at Collar of Screw according to Uniform Pressure Theory Formula

 $\mu_{collar} = \frac{3 \cdot T_{c} \cdot \left(\left(D_{0}^{2}\right) - \left(D_{i}^{2}\right)\right)}{W \cdot \left(\left(D_{0}^{3}\right) - \left(D_{i}^{3}\right)\right)}$

Example with Units

$$0.1441 = \frac{3 \cdot 10000 \, \text{N*mm} \, \cdot \left(\left(100 \, \text{mm}^{2}\right) \cdot \left(60 \, \text{mm}^{2}\right)\right)}{1700 \, \text{N} \, \cdot \left(\left(100 \, \text{mm}^{3}\right) \cdot \left(60 \, \text{mm}^{3}\right)\right)}$$

3.2) Coefficient of Friction at Collar of Screw according to Uniform Wear Theory Formula 🕝

Formula	Example with Units
$4 \cdot T_c$	$0.1471 = \frac{4 \cdot 10000 \text{N*mm}}{10000 \text{N*mm}}$
$\mu_{\text{collar}} = \frac{1}{W \cdot \left(\left(D_{0} \right) + \left(D_{i} \right) \right)}$	$1700 \text{ N} \cdot ((100 \text{ mm}) + (60 \text{ mm}))$

Evaluate Formula

aluateFormula 🕅

3.3) Collar Friction Torque for Screw according to Uniform Pressure Theory Formula 🕝

Formula $T_{c} = \frac{\mu_{collar} \cdot W \cdot \left(R_{1}^{3} - R_{2}^{3}\right)}{\left(\frac{3}{2}\right) \cdot \left(R_{1}^{2} - R_{2}^{2}\right)}$

Example with Units

$$11951.1318 \,\text{N*mm} = \frac{0.16 \cdot 1700 \,\text{N} \cdot \left(54 \,\text{mm}^3 - 32 \,\text{mm}^3\right)}{\left(\frac{3}{2}\right) \cdot \left(54 \,\text{mm}^2 - 32 \,\text{mm}^2\right)}$$

3.4) Collar Friction Torque for Screw according to Uniform Wear Theory Formula 🕝 👘

FormulaExample with UnitsEvaluat
$$T_c = \mu_{collar} \cdot W \cdot \frac{R_1 + R_2}{2}$$
11696 N*mm = 0.16 · 1700 N · $\frac{54 \text{ mm} + 32 \text{ mm}}{2}$

3.5) Load on Screw given Collar Friction Torque according to Uniform Pressure Theory Formula

FormulaExample with UnitsEvaluate Formula
$$W = \frac{3 \cdot T_c \cdot (D_o^2 - D_i^2)}{\mu_{collar} \cdot (D_o^3 - D_i^3)}$$
1530.6122 N $\frac{3 \cdot 10000 N^*mm \cdot (100 mm^2 - 60 mm^2)}{0.16 \cdot (100 mm^3 - 60 mm^3)}$

3.6) Load on Screw given Collar Friction Torque according to Uniform Wear Theory Formula

FormulaExample with UnitsEvaluate Formula
$$W = \frac{4 \cdot T_c}{\mu_{collar} \cdot (D_0 + D_i)}$$
 $1562.5 \text{ N} = \frac{4 \cdot 10000 \text{ N*mm}}{0.16 \cdot (100 \text{ mm} + 60 \text{ mm})}$

4) Design of Screw and Nut Formulas 🕝

4.1) Axial Load on Screw given Direct Compressive Stress Formula

FormulaExample with UnitsEvaluate Formula
$$W_a = \frac{\sigma_c \cdot \pi \cdot d_c^2}{4}$$
 $130231.5819_N = \frac{94_{N/mm^2} \cdot 3.1416 \cdot 42_{mm}^2}{4}$

Evaluate Formula

Formula (

Formula Example with Units

$$d_{c} = \frac{W_{a}}{\tau_{s} \cdot \pi \cdot t \cdot z} \qquad 41.9672 \text{ mm} = \frac{131000 \text{ N}}{27.6 \text{ N/mm}^{2} \cdot 3.1416 \cdot 4 \text{ mm} \cdot 9}$$

4.10) Core Diameter of Screw given Unit Bearing Pressure Formula 🕝 🚽

Formula $d_{c} = \sqrt{\left(d\right)^{2} \cdot \left(4 \cdot \frac{W_{a}}{S_{b} \cdot \pi \cdot z}\right)}$

Example with Units

$$41.9012 \,\mathrm{mm} = \sqrt{\left(50 \,\mathrm{mm}\right)^2 - \left(4 \cdot \frac{131000 \,\mathrm{N}}{24.9 \,\mathrm{N/mm^2} \cdot 3.1416 \cdot 9}\right)}$$

4.11) Direct Compressive Stress in Screw Formula 🕝

Formula Example with Units

$$\sigma_{c} = \frac{W_{a} \cdot 4}{\pi \cdot d_{c}^{2}} \qquad 94.5546 \text{ N/mm}^{2} = \frac{131000 \text{ N} \cdot 4}{3.1416 \cdot 42 \text{ mm}^{2}}$$

4.12) Helix Angle of Thread Formula

 Formula
 Evaluate Formula

 Formula
 Example with Units
 Evaluate Formula (*

$$\alpha = a \tan \left(\frac{L}{\pi \cdot d_m} \right)$$
 $4.3528^\circ = a \tan \left(\frac{11 \, mm}{3.1416 \cdot 46 \, mm} \right)$
 $4.3528^\circ = a \tan \left(\frac{11 \, mm}{3.1416 \cdot 46 \, mm} \right)$

4.13) Lead of Screw given Helix angle FormulaEvaluate FormulaFormulaExample with Units
$$\mu = \tan(\alpha) \cdot \pi \cdot d_m$$
11.3734 mm = $\tan(4.5^\circ) \cdot 3.1416 \cdot 46$ mm

4.14) Lead of Screw given Overall Efficiency Formula 🕝

4.15) Mean Diameter of Power Screw Formula 🕝

Evaluate Formula 🦳

4.22) Number of Threads in Engagement with Nut given Transverse Shear Stress at Root of Nut Formula

4.23) Number of Threads in Engagement with Nut given Unit Bearing Pressure Formula 🕝

4.27) Thread Thickness at Core Diameter of Screw given Transverse Shear Stress Formula 🕝

4.28) Thread Thickness at Root of Nut given Transverse Shear Stress at Root of Nut Formula

4.29) Torsional Moment in Screw given Torsional Shear Stress Formula

© formuladen.com

4.33) Unit Bearing Pressure for Thread Formula

FormulaExample with UnitsEvaluate Formula
$$S_b = 4 \cdot \frac{W_a}{\pi \cdot z \cdot (d^2 - d_c^2)}$$
25.1803 N/mm² = $4 \cdot \frac{131000 N}{3.1416 \cdot 9 \cdot (50 mm² - 42 mm²)}$ Evaluate Formula

5) Torque Requirement in Lifting Load using Square Threaded Screw Formulas 🖻

5.1) Coefficient of Friction for Screw Thread given Efficiency of Square Threaded Screw Formula 🕝

Formula	Example with Units	Evaluate Formula 🕝
$tan(\alpha) \cdot (1 - \eta)$	$\tan(4.5^\circ) \cdot (1 - 0.35)$	
$\mu = \frac{1}{\tan(\alpha) \cdot \tan(\alpha) + \eta}$	$0.1436 = \frac{1}{\tan(4.5^{\circ}) \cdot \tan(4.5^{\circ}) + 0.35}$	

5.2) Coefficient of Friction of Power Screw given Effort Required to Lift Load Formula

FormulaExample with UnitsEvaluate Formula
$$\mu = \frac{P_{li} - W \cdot \tan(\alpha)}{W + P_{li} \cdot \tan(\alpha)}$$
$$0.1549 = \frac{402 \text{ N} - 1700 \text{ N} \cdot \tan(4.5^{\circ})}{1700 \text{ N} + 402 \text{ N} \cdot \tan(4.5^{\circ})}$$

5.3) Coefficient of Friction of Power Screw given Torque Required to Lift Load Formula Evaluate Formula Formula Example with Units $\mu = \frac{\left(2 \cdot \frac{Mt_{l_i}}{d_m}\right) - W \cdot \tan\left(\alpha\right)}{W - \left(2 \cdot \frac{Mt_{l_i}}{d_m}\right) \cdot \tan\left(\alpha\right)} \qquad 0.1613 = \frac{\left(2 \cdot \frac{9265 N^*mm}{46 mm}\right) - 1700 N \cdot \tan\left(4.5^\circ\right)}{1700 N - \left(2 \cdot \frac{9265 N^*mm}{46 mm}\right) \cdot \tan\left(4.5^\circ\right)}$ 5.4) Efficiency of Square Threaded Power Screw Formula Evaluate Formula Formula Example with Units $\eta = \frac{\tan(\alpha)}{\frac{\mu + \tan(\alpha)}{1 - \mu \tan(\alpha)}} \qquad 0.3401 = \frac{\tan(4.5^{\circ})}{\frac{0.15 + \tan(4.5^{\circ})}{1 - 0.15 \cdot \tan(4.5^{\circ})}}$

5.6) Effort Required to Lift Load given Torque Required to Lift Load Formula

Formula	Example with Units
$P_{li} = 2 \cdot \frac{Mt_{li}}{d_m}$	$402.8261 \text{N} = 2 \cdot \frac{9265 \text{N*mm}}{46 \text{mm}}$

5.7) External Torque required to raise Load given Efficiency Formula 🕝

FormulaExample with UnitsEvaluate Formula
$$Mt_t = W_a \cdot \frac{L}{2 \cdot \pi \cdot \eta}$$
 $655263.6371 N^*mm = 131000 N \cdot \frac{11 mm}{2 \cdot 3.1416 \cdot 0.35}$ $655263.6371 N^*mm = 131000 N \cdot \frac{11 mm}{2 \cdot 3.1416 \cdot 0.35}$

5.8) Helix Angle of Power Screw given Effort Required to Lift Load Formula 🕝

FormulaExample with Units
$$\alpha = a tan \left(\frac{P_{li} - W \cdot \mu}{P_{li} \cdot \mu + W} \right)$$
 $4.7736^{\circ} = a tan \left(\frac{402 \text{ N} - 1700 \text{ N} \cdot 0.15}{402 \text{ N} \cdot 0.15 + 1700 \text{ N}} \right)$

Evaluate Formula

Evaluate Formula

a 💽

5.9) Helix Angle of Power Screw given Torque Required to Lift Load Formula

 $\alpha = \alpha \tan \left(\frac{2 \cdot Mt_{li} - W \cdot d_{m} \cdot \mu}{2 \cdot Mt_{li} \cdot \mu + W \cdot d_{m}} \right)$

Example with Units

$$4.8^{\circ} = a \tan \left(\frac{2 \cdot 9265_{N^{*}mm} - 1700_{N} \cdot 46_{mm} \cdot 0.15}{2 \cdot 9265_{N^{*}mm} \cdot 0.15 + 1700_{N} \cdot 46_{mm}} \right)$$

5.10) Load on Power Screw given Effort Required to Lift Load Formula 🕝

5.11) Load on Power Screw given Torque Required to Lift Load Formula 🕝

Formula

$$W = \left(2 \cdot \frac{Mt_{li}}{d_m}\right) \cdot \left(\frac{1 - \mu \cdot \tan(\alpha)}{\mu + \tan(\alpha)}\right)$$

Example with Units

$$1740.5669 \text{ N} = \left(2 \cdot \frac{9265 \text{ N*mm}}{46 \text{ mm}}\right) \cdot \left(\frac{1 \cdot 0.15 \cdot \tan(4.5^{\circ})}{0.15 + \tan(4.5^{\circ})}\right)$$

5.12) Load on Screw given Overall Efficiency Formula

FormulaExample with UnitsEvaluate Formula
$$W_a = 2 \cdot \pi \cdot Mt_t \cdot \frac{\eta}{L}$$
131686.9961 N = 2 \cdot 3.1416 \cdot 658700 N*mm $\cdot \frac{0.35}{11 mm}$ 11mm

5.13) Maximum Efficiency of Square Threaded Screw Formula

E.....

Evaluate Formula

Evaluate Formula

Evaluate Formula

Evaluate Formula

Evaluate Formula

$$\eta_{\max} = \frac{1 - \sin(a \tan(\mu))}{1 + \sin(a \tan(\mu))} \qquad 0.7416 = \frac{1 - \sin(a \tan(0.15))}{1 + \sin(a \tan(0.15))}$$

5.14) Mean Diameter of Power Screw given Torque Required to Lift Load Formula 🕝 👘

Formula	Example with Units
$d_{m} = 2 \cdot \frac{M t_{li}}{P_{li}}$	$46.0945\text{mm}\ = 2\cdot \frac{9265\text{N*mm}}{402\text{N}}$

Formula

Example with Units $0.1387 = \tan(4.5^{\circ}) \cdot \frac{1 - 0.35}{\sec(0.2618) \cdot (0.35 + \tan(4.5^{\circ}) \cdot \tan(4.5^{\circ}))}$

6.3) Coefficient of Friction of Screw given Effort for Trapezoidal Threaded Screw Formula 🕝

Evaluate Formula

$$\mu = \frac{P_{li} - (W \cdot tan(\alpha))}{sec(0.2618) \cdot (W + P_{li} \cdot tan(\alpha))}$$

Example with Units

 $0.1496 = \frac{402_{N} \cdot (1700_{N} \cdot \tan(4.5^{\circ}))}{\sec(0.2618) \cdot (1700_{N} + 402_{N} \cdot \tan(4.5^{\circ}))}$

6.4) Coefficient of Friction of Screw given Effort in Lowering Load Formula

Evaluate Formula 🕝

Formula

 $\mu = \frac{P_{lo} + W \cdot tan(\alpha)}{W \cdot sec(0.2618) \cdot P_{lo} \cdot sec(0.2618) \cdot tan(\alpha)}$

	Example with Units	
0145 -	120м + 1700м ·tan(4.5°)	
0.145 -	$1700 \text{ N} \cdot \text{sec}(0.2618) - 120 \text{ N} \cdot \text{sec}(0.2618) \cdot \tan(4.5^{\circ})$	

6.5) Coefficient of Friction of Screw given Torque Required in Lifting Load with Trapezoidal Thread Formula

EvaluateFormula 🕝

 $\mu = \frac{2 \cdot Mt_{li} - W \cdot d_m \cdot tan(\alpha)}{sec(0.2618) \cdot (W \cdot d_m + 2 \cdot Mt_{li} \cdot tan(\alpha))}$

Example with Units

 $0.1501 = \frac{2 \cdot 9265 \, \text{N*mm} - 1700 \, \text{N} \cdot 46 \, \text{mm} \cdot \tan(4.5^{\circ})}{\sec(0.2618) \cdot (1700 \, \text{N} \cdot 46 \, \text{mm} + 2 \cdot 9265 \, \text{N*mm} \cdot \tan(4.5^{\circ}))}$

6.6) Coefficient of Friction of Screw given Torque Required in Lowering Load with Trapezoidal Thread Formula

Evaluate Formula

Formula

 $\mu = \frac{2 \cdot Mt_{lo} + W \cdot d_m \cdot tan(\alpha)}{sec(0.2618) \cdot (W \cdot d_m - 2 \cdot Mt_{lo} \cdot tan(\alpha))}$

Example with Units

$$0.15 = \frac{2 \cdot 2960 \,\text{N*mm} + 1700 \,\text{N} \cdot 46 \,\text{mm} \cdot \tan(4.5^\circ)}{\sec(0.2618) \cdot (1700 \,\text{N} \cdot 46 \,\text{mm} - 2 \cdot 2960 \,\text{N*mm} \cdot \tan(4.5^\circ))}$$

© formuladen.com

6.11) Helix Angle of Screw given Effort Required in Lowering Load with Trapezoidal Threaded Screw Formula

 $120_{\rm N} \cdot 0.15 \cdot \text{sec} (15 \cdot$

6.12) Helix Angle of Screw given Torque Required in Lifting Load with Trapezoidal Threaded Screw Formula

$$\alpha = a \tan \left(\frac{2 \cdot M t_{li} \cdot (W \cdot d_{m} \cdot \mu \cdot \sec(0.2618))}{(W \cdot d_{m}) + (2 \cdot M t_{li} \cdot \mu \cdot \sec(0.2618))} \right)$$

Example with Units

$$4.5037^{\circ} = a \tan \left(\frac{2 \cdot 9265 \, N^* mm - (1700 \, N \cdot 46 \, mm \cdot 0.15 \cdot sec(0.2618))}{(1700 \, N \cdot 46 \, mm) + (2 \cdot 9265 \, N^* mm \cdot 0.15 \cdot sec(0.2618))} \right)$$

6.13) Helix Angle of Screw given Torque Required in Lowering Load with Trapezoidal Threaded Screw Formula

EvaluateFormula 🕝

Evaluate Formula 🦳

$$\alpha = \alpha tan \left(\frac{\left(W \cdot d_{m} \cdot \mu \cdot sec(0.2618) \right) - \left(2 \cdot Mt_{lo} \right)}{\left(W \cdot d_{m} \right) + \left(2 \cdot Mt_{lo} \cdot \mu \cdot sec(0.2618) \right)} \right)$$

Formula

Example with Units

$$4.4978^{\circ} = a \tan \left(\frac{(1700 \text{ N} \cdot 46 \text{ mm} \cdot 0.15 \cdot \text{sec}(0.2618)) - (2 \cdot 2960 \text{ N*mm})}{(1700 \text{ N} \cdot 46 \text{ mm}) + (2 \cdot 2960 \text{ N*mm} \cdot 0.15 \cdot \text{sec}(0.2618))} \right)$$

6.14) Load on Screw given Effort Required in Lifting Load with Trapezoidal Threaded Screw Formula

Formula	Exa	ample with Units	Evaluate Formula 🕝
P _{li}	$16970021\mathrm{N} = -$	402 N	
$W = \frac{\mu \cdot \sec((0.2618)) + \tan(\alpha)}{1 - \mu \cdot \sec((0.2618)) \cdot \tan(\alpha)}$	$\frac{1097.0021}{1}$	$\frac{0.15 \cdot \sec((0.2618)) + \tan(4.5^{\circ})}{0.15 \cdot \sec((0.2618)) \cdot \tan(4.5^{\circ})}$	

6.17) Load on Screw given Torque Required in Lowering Load with Trapezoidal Threaded Screw Formula

 $W = \frac{Mt_{lo}}{0.5 \cdot d_{m} \cdot \left(\frac{(\mu \cdot sec((0.2618))) \cdot tan(\alpha)}{1 + (\mu \cdot sec((0.2618)) \cdot tan(\alpha))}\right)}$

6.18) Mean Diameter of Screw given Torque in Lifting Load with Trapezoidal Threaded Screw Formula

Example with Units			
46.0132	9265 N*mm		
40.0132 mm —	0.5 · 1700 N · ($\left(\frac{0.15 \cdot \sec((0.2618)) + \tan(4.5^{\circ})}{1 - 0.15 \cdot \sec((0.2618)) \cdot \tan(4.5^{\circ})}\right)$	

Evaluate Formula 🦳

6.19) Mean Diameter of Screw given Torque in Lowering Load with Trapezoidal Threaded Screw Formula

6.20) Torque Required in Lifting Load with Trapezoidal Threaded Screw Formula 🕝

$$Mt_{li} = 0.5 \cdot d_{m} \cdot W \cdot \left(\frac{\left(\mu \cdot \sec\left(\left(0.2618 \right) \right) \right) + \tan\left(\alpha \right)}{1 \cdot \left(\mu \cdot \sec\left(\left(0.2618 \right) \right) \cdot \tan\left(\alpha \right) \right)} \right)$$

Example with Units

$$9262.334_{N*mm} = 0.5 \cdot 46_{mm} \cdot 1700_{N} \cdot \left(\frac{(0.15 \cdot \sec((0.2618))) + \tan(4.5^{\circ})}{1 \cdot (0.15 \cdot \sec((0.2618)) \cdot \tan(4.5^{\circ}))}\right)$$

6.21) Torque Required in Lowering Load with Trapezoidal Threaded Screw Formula

$$Mt_{lo} = 0.5 \cdot d_{m} \cdot W \cdot \left(\frac{\left(\mu \cdot \sec\left(\left(0.2618 \right) \right) \right) - \tan\left(\alpha \right)}{1 + \left(\mu \cdot \sec\left(\left(0.2618 \right) \right) \cdot \tan\left(\alpha \right) \right)} \right)$$

Example with Units

$$2958.5011_{N^{*}mm} = 0.5 \cdot 46_{mm} \cdot 1700_{N} \cdot \left(\frac{(0.15 \cdot \sec((0.2618))) - \tan(4.5^{\circ})}{1 + (0.15 \cdot \sec((0.2618)) \cdot \tan(4.5^{\circ}))}\right)$$

Evaluate Formula 🦳

Evaluate Formula (

Variables used in list of Power Screws Formulas above

- A Bearing Area between screw and nut (Square Millimeter)
- d Nominal diameter of screw (Millimeter)
- **d**_c Core diameter of screw (Millimeter)
- D_i Inner Diameter of Collar (Millimeter)
- d_m Mean Diameter of Power Screw (Millimeter)
- **D**_o Outer Diameter of Collar (Millimeter)
- L Lead of Power Screw (Millimeter)
- Mt_{li} Torque for lifting load (Newton Millimeter)
- Mt_{Io} Torque for lowering load (Newton Millimeter)
- Mt_t Torsional Moment on Screw (Newton Millimeter)
- **p** Pitch of power screw thread (Millimeter)
- Pli Effort in lifting load (Newton)
- Plo Effort in lowering load (Newton)
- R₁ Outer Radius of Power Screw Collar (*Millimeter*)
- R₂ Inner Radius of Power Screw Collar (*Millimeter*)
- **S**_b Unit bearing pressure for nut (Newton per Square Millimeter)
- t Thread Thickness (Millimeter)
- T_c Collar Friction Torque for Power Screw (Newton Millimeter)
- **t**_n Transverse shear stress in nut (Newton per Square Millimeter)
- W Load on screw (Newton)
- W_a Axial load on screw (Newton)
- Z Number of Engaged Threads
- α Helix angle of screw (Degree)
- **η** Efficiency of power screw
- nmax Maximum Efficiency of Power Screw
- µ Coefficient of friction at screw thread
- µcollar Coefficient of Friction for Collar

Constants, Functions, Measurements used in list of Power Screws Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- Functions: atan, atan(Number) Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.
- Functions: sec, sec(Angle) Secant is a trigonometric function that is defined ratio of the hypotenuse to the shorter side adjacent to an acute angle (in a right-angled triangle); the reciprocal of a cosine.
- Functions: sin, sin(Angle) Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Functions: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Functions: tan, tan(Angle) The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Area in Square Millimeter (mm²) Area Unit Conversion
- Measurement: Pressure in Newton per Square Millimeter (N/mm²) Pressure Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Torque in Newton Millimeter
 (N*mm)

Torque Unit Conversion 🕝

- σ_c Compressive stress in screw (Newton per Square Millimeter)
- T Torsional shear stress in screw (Newton per Square Millimeter)
- T_s Transverse Shear Stress in Screw (Newton per Square Millimeter)
- Measurement: Stress in Newton per Square Millimeter (N/mm²) Stress Unit Conversion 🕝

 Important Refrigeration and Air Conditioning Formulas

Try our Unique Visual Calculators

- 🔀 Percentage increase 🕝
- 🎆 HCF calculator 🕝

• Mixed fraction C

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

12/5/2024 | 5:06:44 AM UTC

