Important Design of Keys Formulas PDF

List of 32 Important Design of Keys Formulas

1) Design of Kennedy Key Formulas (7)

1.1) Compressive Stress in Kennedy Key Formula 🕝

Formula

Example with Units

 $\sigma_{c} = \sqrt{2} \cdot \frac{Mt_{k}}{d_{c} \cdot b_{k} \cdot l} \left[128.0285 \, \text{N/mm}^{2} \right. = \sqrt{2} \cdot \frac{712763.6 \, \text{N*mm}}{44.98998 \, \text{mm} \cdot 35 \, \text{mm}} \cdot 35 \, \text{mm} \right]$

Evaluate Formula

Evaluate Formula

Evaluate Formula (

Evaluate Formula

Evaluate Formula (

1.2) Diameter of Shaft given Compressive Stress in Kennedy Key Formula 🕝

Example with Units

 $d_{s} = \sqrt{2} \cdot \frac{Mt_{k}}{\sigma_{c} \cdot b_{k} \cdot 1}$ $45 \text{ mm} = \sqrt{2} \cdot \frac{712763.6 \text{ N*mm}}{128 \text{ N/mm}^{2} \cdot 5 \text{ mm} \cdot 35 \text{ mm}}$

1.3) Diameter of Shaft given Shear Stress in Kennedy Key Formula 🕝

Formula

 $d_{s} = \frac{Mt_{k}}{\sqrt{2} \cdot \tau \cdot b_{k} \cdot l} \quad \boxed{ 45.0704 \, \text{mm} = \frac{712763.6 \, \text{N*mm}}{\sqrt{2} \cdot 63.9 \, \text{N/mm}^{2} \cdot 5 \, \text{mm} \cdot 35 \, \text{mm}} }$

1.4) Length of Kennedy Key given Compressive Stress in Key Formula 🕝

Formula

Example with Units

 $l = \sqrt{2} \cdot \frac{\text{M}t_k}{d_s \cdot b_k \cdot \sigma_c} \left| \quad \right| \ 35.0078 \, \text{mm} \ = \sqrt{2} \cdot \frac{712763.6 \, \text{N*mm}}{44.98998 \, \text{mm} \, \cdot 5 \, \text{mm} \, \cdot 128 \, \text{N/mm}^2}$

1.5) Length of Kennedy Key given Shear Stress in Key Formula 🕝

Example with Units

 $l = \frac{Mt_k}{\sqrt{2} \cdot d_c \cdot b_k \cdot \tau}$ 35.0626 mm = $\frac{712763.6 \,\text{N*mm}}{\sqrt{2} \cdot 44.98998 \,\text{mm} \cdot 5 \,\text{mm} \cdot 63.9 \,\text{N/mm}^2}$

1.6) Shear Stress in Kennedy Key Formula 🕝

Example with Units

 $\tau = \frac{Mt_k}{\sqrt{Z} \cdot d_s \cdot b_k \cdot 1} \qquad 64.0143 \, \text{N/mm}^2 = \frac{712763.6 \, \text{N*mm}}{\sqrt{Z} \cdot 44.98998 \, \text{mm} \cdot 5 \, \text{mm} \cdot 35 \, \text{mm}}$

Evaluate Formula (

1.7) Torque Transmitted by Kennedy Key given Compressive Stress in Key Formula 🕝

Formula

Evaluate Formula (Example with Units

 $\mathsf{Mt_k} = \sigma_c \cdot \mathsf{d_S} \cdot \mathsf{b_k} \cdot \frac{1}{\sqrt{Z}} \qquad 712604.9267 \, \mathsf{N^*mm} \ = \ 128 \, \mathsf{N/mm^2} \, \cdot \, 44.98998 \, \mathsf{mm} \, \cdot \, 5 \, \mathsf{mm} \, \cdot \, \frac{35 \, \mathsf{mm}}{\sqrt{Z}}$

1.8) Torque Transmitted by Kennedy Key given Shear Stress in Key Formula 🕝

Evaluate Formula (

 $Mt_{k} = \tau \cdot \sqrt{2} \cdot d_{s} \cdot b_{k} \cdot l$

Example with Units

 $711491.4815\,\text{N*mm} = 63.9\,\text{N/mm}^2\,\cdot\sqrt{2}\,\cdot44.98998\,\text{mm}\,\cdot5\,\text{mm}\,\cdot35\,\text{mm}$

1.9) Width of Key given Compressive Stress in Key Formula 🕝

 $b_k = \sqrt{2} \cdot \frac{Mt_k}{d_{-} \cdot \sigma_{a} \cdot 1} = \sqrt{2} \cdot \frac{712763.6 \,\text{N*mm}}{44.98998 \,\text{mm} \cdot 128 \,\text{N/mm}^2 \cdot 35 \,\text{mm}}$

2) Design of Splines Formulas (7)

2.1) Major Diameter of Spline given Mean Radius Formula 🕝

Example with Units $D = 4 \cdot R_m - d \mid 60 \, \text{mm} = 4 \cdot 28 \, \text{mm} - 52 \, \text{mm}$ Evaluate Formula C

Evaluate Formula

2.2) Mean Radius of Splines Formula C

Formula

Example with Units $R_{\rm m} = \frac{D + d}{4}$ $28_{\rm mm} = \frac{60_{\rm mm} + 52_{\rm mm}}{4}$ Evaluate Formula 🕝

Evaluate Formula C

2.3) Mean Radius of Splines given Torque Transmitting Capacity Formula 🗂

Example with Units

 $R_{m} = \frac{M_{t}}{p_{m} \cdot A} \left| \quad 28_{mm} = \frac{224500_{N^{*}mm}}{5.139652_{N/mm^{2}} \cdot 1560_{mm^{2}}} \right|$

2.4) Minor Diameter of Spline given Mean Radius Formula C

Example with Units

Evaluate Formula (

$$d = 4 \cdot R_{m} - D$$

 $52 \, \text{mm} = 4 \cdot 28 \, \text{mm} - 60 \, \text{mm}$

2.5) Permissible Pressure on Splines given Torque Transmitting Capacity Formula 🕝

Example with Units

Evaluate Formula (

 $p_{m} = \frac{M_{t}}{A \cdot R_{m}} \left[-5.1397 \, \text{N/mm}^{2} \right] = \frac{224500 \, \text{N*mm}}{1560 \, \text{mm}^{2} \cdot 28 \, \text{mm}}$

2.6) Torque Transmitting Capacity of Splines Formula

Formula

Example with Units

Evaluate Formula (

Evaluate Formula (

 $M_t = p_m \cdot A \cdot R_m$ $224499.9994 \, \text{N*mm} = 5.139652 \, \text{N/mm}^2 \cdot 1560 \, \text{mm}^2 \cdot 28 \, \text{mm}$

2.7) Torque Transmitting Capacity of Splines given Diameter of Splines Formula

 $M_{t} = \frac{p_{m} \cdot l_{h} \cdot n \cdot \left(D^{2} - d^{2}\right)}{R}$

Example with Units

 $5.139652\,\text{N/mm}^2\,\cdot65\,\text{mm}\,\cdot6\cdot\left(\,60\,\text{mm}^{-2}\,-\,52\,\text{mm}^{-2}\right)$ $224499.9994 \, N*mm =$

2.8) Total Area of Splines Formula C

Formula

Example with Units

Evaluate Formula C

 $A = 0.5 \cdot \left(l_{h} \cdot n \right) \cdot \left(D - d \right) \boxed{1560 \, \text{mm}^{2} \, = 0.5 \cdot \left(65 \, \text{mm} \cdot 6 \right) \cdot \left(60 \, \text{mm} - 52 \, \text{mm} \right)}$

2.9) Total Area of Splines given Torque Transmitting Capacity Formula 🗂

Formula

Example with Units

Evaluate Formula C

 $A = \frac{M_t}{p_m \cdot R_m} \qquad 1560 \, \text{mm}^2 = \frac{224500 \, \text{N*mm}}{5.139652 \, \text{N/mm}^2 \cdot 28 \, \text{mm}}$

3) Design of Square and Flat Keys Formulas 🕝

3.1) Compressive Stress in Key Formula C

Formula

Example with Units

Evaluate Formula C

$$\sigma_{c} = 4 \cdot \frac{M_{t}}{d_{s} \cdot l \cdot h}$$

 $\sigma_{c} = 4 \cdot \frac{M_{t}}{d_{c} \cdot l \cdot h} \left[126.7302 \, \text{N/mm}^{2} \right. = 4 \cdot \frac{224500 \, \text{N*mm}}{44.98998 \, \text{mm} \cdot 35 \, \text{mm} \cdot 4.5 \, \text{mm}}$

3.2) Compressive Stress in Square Key due to Transmitted Torque Formula 🕝

Example with Units

Evaluate Formula (

Evaluate Formula 🕝

Evaluate Formula (

 $127.8 \,\mathrm{N/mm^2} = 2 \cdot 63.9 \,\mathrm{N/mm^2}$

3.3) Force on Key Formula C

Formula

Example with Units $F = 2 \cdot \frac{M_t}{d_a} \left| 9980 \,\text{N} \right| = 2 \cdot \frac{224500 \,\text{N*mm}}{44.98998 \,\text{mm}}$

3.4) Height of Key given Compressive Stress in Key Formula C

Formula

Example with Units $h = 4 \cdot \frac{M_t}{d_s \cdot l \cdot \sigma_c}$ 4.4554 mm = $4 \cdot \frac{224500 \, \text{N*mm}}{44.98998 \, \text{mm} \cdot 35 \, \text{mm} \cdot 128 \, \text{N/mm}^2}$

3.5) Length of Key given Compressive Stress in Key Formula 🕝

Example with Units $l = 4 \cdot \frac{M_t}{d_c \cdot \sigma_c \cdot h} \left[34.6528 \, \text{mm} \right] = 4 \cdot \frac{224500 \, \text{N*mm}}{44.98998 \, \text{mm} \cdot 128 \, \text{N/mm}^2 \cdot 4.5 \, \text{mm}}$

3.6) Length of Key given Shear Stress Formula

Formula

Example with Units Evaluate Formula [

Evaluate Formula C

Evaluate Formula

3.7) Shaft Diameter given Compressive Stress in Key Formula C

Formula

Example with Units $d_{s} = 4 \cdot \frac{M_{t}}{\sigma_{c} \cdot l \cdot h}$ 44.5437 mm = $4 \cdot \frac{224500 \, N^{*}mm}{128 \, N/mm^{2} \cdot 35 \, mm \cdot 4.5 \, mm}$

3.8) Shaft Diameter given Force on Key Formula 🕝

Example with Units $d_s = 2 \cdot \frac{M_t}{F}$ 44.99 mm = $2 \cdot \frac{224500 \,\text{N*mm}}{9980 \,\text{N}}$ Evaluate Formula

3.9) Shear Stress in given Force on Key Formula 🕝

Formula

Example with Units

 $\tau_{\text{flat key}} = \frac{F}{b_k \cdot l} \left| \right| 57.0286 \,\text{N/mm}^2 = \frac{9980 \,\text{N}}{5 \,\text{mm} \cdot 35 \,\text{mm}}$

3.10) Shear Stress in Key given Torque Transmitted Formula 🕝

Formula

 $\tau_{\text{flat key}} = 2 \cdot \frac{M_{\text{t}}}{b_{\text{k}} \cdot l \cdot d_{\text{s}}} \left[57.0286 \, \text{N/mm}^2 \right] = 2 \cdot \frac{224500 \, \text{N*mm}}{5 \, \text{mm} \cdot 35 \, \text{mm} \cdot 44.98998 \, \text{mm}}$

3.11) Shear Stress on Flat Key Formula C

Formula

Example with Units

 $\tau_{\text{flat key}} = \frac{2 \cdot T}{b_{k} \cdot d_{s} \cdot l} \left| \quad \right| \ 57.0286 \, \text{N/mm}^{\text{2}} \ = \frac{2 \cdot 224499.99458 \, \text{N*mm}}{5 \, \text{mm} \cdot 44.98998 \, \text{mm} \cdot 35 \, \text{mm}}$

3.12) Torque Transmitted by Keyed Shaft given Force on Keys Formula 🕝

Formula Example with Units
$$M_t = F \cdot \frac{d_s}{2} \qquad 224500.0002 \, \text{N*mm} = 9980 \, \text{N} \cdot \frac{44.98998 \, \text{mm}}{2}$$

3.13) Torque Transmitted by Keyed Shaft given Stress in Key Formula 🕝 Formula

Example with Units

 $M_{t} = \sigma_{c} \cdot d_{s} \cdot l \cdot \frac{h}{4}$

 $226749.4992 \,\text{N*mm} = 128 \,\text{N/mm}^2 \cdot 44.98998 \,\text{mm} \cdot 35 \,\text{mm} \cdot \frac{4.5 \,\text{mm}}{4}$

3.14) Width of Key given Shear Stress in Key Formula 🕝

Formula

Example with Units

 $b_k = \frac{F}{\tau_{flat \, kev} \cdot l} \left| \quad \right| \, 5_{mm} = \frac{9980 \, \text{N}}{57.02857 \, \text{N/mm}^2 \cdot 35_{mm}}$

Evaluate Formula (

Evaluate Formula (

Evaluate Formula

Evaluate Formula

Evaluate Formula 🕝

Evaluate Formula C

Variables used in list of Design of Keys Formulas above

- A Total Area of Splines (Square Millimeter)
- b_k Width of Key (Millimeter)
- **d** Minor Diameter of Spline Key Shaft (Millimeter)
- D Major Diameter of Spline Key Shaft (Millimeter)
- d_s Diameter of Shaft using Key (Millimeter)
- **F** Force on Key (Newton)
- h Height of Key (Millimeter)
- I Length of Key (Millimeter)
- I_h Length of Hub on Keyed Shaft (Millimeter)
- M_t Transmitted Torque by Keyed Shaft (Newton Millimeter)
- Mt_k Transmitted Torque by Kennedy Key (Newton Millimeter)
- n Number of Splines
- p_m Permissible Pressure on Splines (Newton per Square Millimeter)
- R_m Mean Radius of Spline of Shaft (Millimeter)
- T Torque Transmitted by Shaft (Newton Millimeter)
- σ_c Compressive Stress in Key (Newton per Square Millimeter)
- τ Shear Stress in Key (Newton per Square Millimeter)
- T_{flat key} Shear Stress (Newton per Square Millimeter)

Constants, Functions, Measurements used in list of Design of Keys Formulas above

- Functions: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Area in Square Millimeter (mm²)
 Area Unit Conversion
- Measurement: Pressure in Newton per Square Millimeter (N/mm²)
 Pressure Unit Conversion (
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Torque in Newton Millimeter (N*mm)
- Torque Unit Conversion
- Measurement: Stress in Newton per Square Millimeter (N/mm²)
 Stress Unit Conversion

Download other Important Machine Design PDFs

- Important Power Screws Formulas Important Design of Keys Formulas
- Important Castigliano's Theorem for **Deflection in Complex Structures** Formulas (
- Important Design of Belt Drives Formulas (

- Important Design of Lever Formulas (*)
- Important Design of Pressure Vessels Formulas (
- Important Design of Rolling Contact Bearing Formulas

Try our Unique Visual Calculators

- Percentage decrease
- HCF of three numbers

Multiply fraction

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

12/5/2024 | 5:04:39 AM UTC