Important Castigliano's Theorem for Deflection in Complex Structures Formulas PDF

Formulas Examples with Units

List of 14 Important Castigliano's Theorem for Deflection in Complex Structures Formulas

Evaluate Formula

Evaluate Formula

1) Cross-sectional Area of Rod given Strain Energy stored in Rod Formula 🕝

Formula
 Example with Units

$$A = P^2 \cdot \frac{L}{2 \cdot U \cdot E}$$
 552.6987 mm² = 55000 N $^2 \cdot \frac{1432.449 mm}{2 \cdot 37.13919 J \cdot 105548.9 N/mm²}$

2) Force Applied on Rod given Strain Energy Stored in Tension Rod Formula 🕝

3) Length of Rod given Strain Energy Stored Formula 🕝

4) Length of Shaft given Strain Energy Stored in Shaft Subjected to Bending Moment Formula

5) Length of Shaft when Strain Energy in Shaft Subjected to External Torque Formula 🕝

Formula	Example with Units
$I = \frac{2 \cdot \mathbf{U} \cdot \mathbf{J} \cdot \mathbf{G}}{2 \cdot \mathbf{U} \cdot \mathbf{J} \cdot \mathbf{G}}$	1433541 mm = $\frac{2 \cdot 37.13919 \text{ J} \cdot 553 \text{ mm}^4 \cdot 105591 \text{ N/mm}^2}{1000000000000000000000000000000000000$
$L = \frac{\tau^2}{\tau^2}$	55005 N*mm ²

6) Modulus of Elasticity given Strain Energy Stored in Shaft Subjected to Bending Moment Formula 🕝

	Formula	Example with Units	Evaluate Formula 🕝
$\mathbf{E} = \mathbf{M_b}^2 \cdot \frac{\mathbf{L}}{2 \cdot \mathbf{U} \cdot \mathbf{I}}$	$10EE00.6016w$ 2 $= EE001w$ 2 $1432.449 mm$		
	$105590.0910 \text{ N/mm}^2 = 55001 \text{ N*mm}^2 \cdot \frac{1}{2 \cdot 37.13919 \text{ J} \cdot 552.5 \text{ mm}^4}$		

7) Modulus of Elasticity of Rod given Strain Energy Stored Formula 🕝

Evaluate Formula

Evaluate Formula

Evaluate Formula

Formula 🌈

Formula
 Example with Units

$$E = P^2 \cdot \frac{L}{2 \cdot A \cdot U}$$
 105548.8926 N/mm² = 55000 N² $\cdot \frac{1432.449 \text{ mm}}{2 \cdot 552.6987 \text{ mm²} \cdot 37.13919 \text{ J}}$

8) Modulus of Rigidity of Rod given Strain Energy in Rod Formula 🕝

FormulaExample with UnitsEvaluate I
$$G = \tau^2 \cdot \frac{L}{2 \cdot J \cdot U}$$
105510.5658 N/mm² = 55005 N*mm² $\cdot \frac{1432.449 \text{ mm}}{2 \cdot 553 \text{ mm}^4 \cdot 37.13919 \text{ J}}$

9) Moment of Inertia of Shaft when Strain Energy Stored in Shaft Subjected to Bending Moment Formula

Formula
 Example with Units
 Evaluate Formula

 I =
$$M_b^2 \cdot \frac{L}{2 \cdot E \cdot U}$$
 552.7188 mm⁴ = 55001 N*mm² $\cdot \frac{1432.449 mm}{2 \cdot 105548.9 N/mm^2 \cdot 37.13919 J}$
 Evaluate Formula

10) Polar Moment of Inertia of Rod given Strain Energy in Rod Formula 🕝

FormulaExample with UnitsEvaluate Formula
$$J = \tau^2 \cdot \frac{L}{2 \cdot U \cdot G}$$
552.5788 mm⁴ = 55005 N*mm² $\cdot \frac{1432.449 mm}{2 \cdot 37.13919 J \cdot 105591 N/mm^2}$

11) Strain Energy in Rod when it is Subjected to External Torque Formula

Formula
 Example with Units

$$U = \tau^2 \cdot \frac{L}{2 \cdot J \cdot G}$$
 37.1109J = 55005 N*mm² $\cdot \frac{1432.449 \text{ mm}}{2 \cdot 553 \text{ mm}^4 \cdot 105591 \text{ N/mm}^2}$

12) Strain Energy Stored in Rod Subjected to Bending Moment Formula 🕝

Formula
 Example with Units

$$U = M_b^2 \cdot \frac{L}{2 \cdot E \cdot I}$$
 37.1539 J = 55001 N*mm^2 \cdot \frac{1432.449 mm}{2 \cdot 105548.9 N/mm^2 \cdot 552.5 mm^4}

14) Torque given Strain Energy in Rod Subjected to External Torque Formula 🕝

Formula	Example with Units	Evaluate Formula 🕝
$\tau = \sqrt{2 \cdot U \cdot J \cdot \frac{G}{L}}$	$55025.9621 \text{N*mm} = \sqrt{2 \cdot 37.13919 \text{J} \cdot 553 \text{mm}^4 \cdot \frac{105591 \text{N/mm}^2}{1432.449 \text{mm}}}$	

Variables used in list of Castigliano's Theorem for Deflection in Complex Structures Formulas above

- A Cross Sectional Area of Rod (Square Millimeter)
- E Modulus of Elasticity (Newton per Square Millimeter)
- **G** Modulus of Rigidity (Newton per Square Millimeter)
- I Area Moment of Inertia (Millimeter^₄)
- J Polar Moment of Inertia (Millimeter⁴)
- L Length of Rod or Shaft (Millimeter)
- M_b Bending Moment (Newton Millimeter)
- P Axial Force on Beam (Newton)
- U Strain Energy (Joule)
- **T** Torque (Newton Millimeter)

Constants, Functions, Measurements used in list of Castigliano's Theorem for Deflection in Complex Structures Formulas above

- Functions: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Area in Square Millimeter (mm²) Area Unit Conversion
- Measurement: Energy in Joule (J) Energy Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Torque in Newton Millimeter
 (N*mm)
 - Torque Unit Conversion 🕝
- Measurement: Second Moment of Area in Millimeter⁴ (mm⁴)
 Second Moment of Area Unit Conversion C
- Measurement: Stress in Newton per Square Millimeter (N/mm²)
 Stress Unit Conversion C

Download other Important Machine Design PDFs

- Important Castigliano's Theorem for **Deflection in Complex Structures** Formulas 🕝
- Important Design of Belt Drives Formulas 🕝
- Important Power Screws Formulas 🕝 🔹 Important Design of Keys Formulas 🕝
 - Important Design of Lever Formulas
 - Important Design of Pressure Vessels Formulas 🕝
 - Important Design of Rolling Contact Bearing Formulas

Try our Unique Visual Calculators

• 🔀 Percentage error 🕝

- 🌉 LCM of three numbers 🕝
- 🛐 Subtract fraction 🕝

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

12/5/2024 | 4:59:42 AM UTC

