Important Constant Wear Theory Formulas PDF

2) Axial Force on Clutch from Constant Wear Theory given Permissible Intensity of Pressure Formula

5) Coefficient of Friction of Clutch from Constant Wear Theory Formula 🕝

Formula $\mu = 8 \cdot \frac{M_{T}}{\pi \cdot p_{a} \cdot d_{i} \cdot \left(\left(d_{o}^{2}\right) - \left(d_{i}^{2}\right)\right)}$

6) Coefficient of Friction of Clutch from Constant Wear Theory given Axial Force Formula 🕝

FormulaExample with Units
$$\mu = 4 \cdot \frac{M_T}{P_a \cdot (d_o + d_i)}$$
 $0.2 = 4 \cdot \frac{238500 \,\text{N*mm}}{15900 \,\text{N} \cdot (200 \,\text{mm} + 100 \,\text{mm})}$

7) Friction Torque on Clutch from Constant Wear Theory given Diameters Formula 🕝

Formula	Example with Units	Evaluate Formula 🕝
$d_0 + d_i$	220500 mm + 100 mm	
$M_T = \mu \cdot P_a \cdot \underline{4}$	238500 N*mm = $0.2 \cdot 15900$ N · <u>4</u>	

8) Friction Torque on Cone Clutch from Constant Wear Theory given Axial Force Formula 🕝

9) Friction Torque on Cone Clutch from Constant Wear Theory given Semi-Cone Angle Formula

Evaluate Formula 🦳

Evaluate Formula 🦳

12) Permissible Pressure Intensity on Clutch from Constant Wear Theory given Axial Force Formula

13) Permissible Pressure Intensity on Clutch from Constant Wear Theory given Friction Torque Formula

Variables used in list of Constant Wear Theory Formulas above

- d_i Inner Diameter of Clutch (Millimeter)
- do Outer Diameter of Clutch (Millimeter)
- M_T Friction Torque on Clutch (Newton Millimeter)
- **p**_a Permissible Intensity of Pressure in Clutch (*Newton per Square Millimeter*)
- Pa Axial Force for Clutch (Newton)
- Pm Operating Force for Clutch (Newton)
- **P**_p Pressure between Clutch Plates (Newton per Square Millimeter)
- Z Pairs of Contacting Surface of Clutch
- α Semi-Cone Angle of Clutch (Degree)
- µ Coefficient of Friction Clutch

Constants, Functions, Measurements used in list of Constant Wear Theory Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- Functions: sin, sin(Angle) Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Pressure in Newton per Square Millimeter (N/mm²) Pressure Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Torque in Newton Millimeter (N*mm) Torque Unit Conversion

© formuladen.com

Download other Important Design of Friction Clutches PDFs

Important Constant Pressure Theory
 Important Constant Wear Theory
 Formulas I Formulas I

Try our Unique Visual Calculators

- 🔣 Winning percentage 🕝
- 🎆 LCM of two numbers 🕝

Mixed fraction 🕝

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

10/29/2024 | 11:28:34 AM UTC

