Important Valeur actuelle Formules PDF

Liste de 19 **Exemples** Important Valeur actuelle Formules

1) Facteur de composition continue de la valeur actuelle Formule 🕝

Évaluer la formule (

Évaluer la formule 🕝

Évaluer la formule 🕝

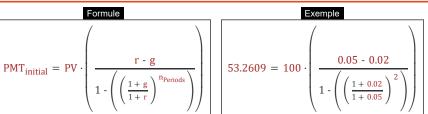
$$F_{PV} = \left(e^{-r \cdot t}\right)$$

Formule Exemple
$$F_{\text{PV}} = \left(e^{-r + t}\right) \quad \boxed{0.6703 = \left(e^{-0.05 + 8}\right)}$$

2) Facteur de valeur actuelle Formule 🕝

$$F_{PVA} = \frac{1 - \left(\left(1 + r \right)^{-n_{Periods}} \right)}{r}$$

3) Nombre de périodes utilisant la valeur actuelle de la rente Formule C


Formule

$$t = \frac{\ln\left(\left(1 - \left(\frac{PVAnnuity}{C_f}\right)\right)^{-1}\right)}{\ln\left(1 + r\right)}$$

4) Paiement de rente croissant en utilisant la valeur actuelle Formule 🗂

Formule

5) PV du Perpétuité Formule C

Formule

6) Rente due pour la valeur actuelle Formule

$$PV_{AD} = PMT \cdot \left(\frac{1 \cdot \left(\frac{1}{(1+r)^{n_{Periods}}} \right)}{r} \right) \cdot (1+r)$$

Évaluer la formule (

Évaluer la formule

Évaluer la formule 🕝

Évaluer la formule 🕝

$$117.1429 = 60 \cdot \left(\frac{1 \cdot \left(\frac{1}{(1+0.05)^2}\right)}{0.05}\right) \cdot (1+0.05)$$

7) Valeur actuelle de la Annuité Formule

Formule

PVAnnuity =
$$\left(\frac{p}{IR}\right) \cdot \left(1 - \left(\frac{1}{\left(1 + IR\right)^{n_{Months}}}\right)\right)$$

Exemple

$$5090.9091 = \left(\frac{28000}{5.5}\right) \cdot \left(1 - \left(\frac{1}{(1+5.5)^{13}}\right)\right)$$

8) Valeur actuelle de la rente avec capitalisation continue Formule 🕝

PVAnnuity =
$$C_f \cdot \left(\frac{1 - e^{-r \cdot n_{Periods}}}{e^r - 1} \right)$$

PVAnnuity =
$$C_f \cdot \left(\frac{1 - e^{-r \cdot n_{\text{Periods}}}}{e^r - 1} \right)$$
 $2784.1003 = 1500 \cdot \left(\frac{1 - e^{-0.05 \cdot 2}}{e^{0.05} - 1} \right)$

9) Valeur actuelle de la rente croissante Formule 🕝

Formule

$$PV_{ga} = \left(\frac{II}{r - g}\right) \cdot \left(1 - \left(\frac{1 + g}{1 + r}\right)^{n_{Periods}}\right)$$

$$3755.102 = \left(\frac{2000}{0.05 - 0.02}\right) \cdot \left(1 - \left(\frac{1 + 0.02}{1 + 0.05}\right)^2\right)$$

10) Valeur actuelle de la rente différée Formule 🕝

$$PV_{DA} = P_0 \cdot \frac{1 \cdot (1 + (IR \cdot 0.01))^{-n_{Periods}}}{(1 + (IR \cdot 0.01)^{t_d} \cdot (IR \cdot 0.01))}$$

$$253.869 = 2500 \cdot \frac{1 \cdot (1 + (5.5 \cdot 0.01))^{-2}}{(1 + (5.5 \cdot 0.01))^{9} \cdot (5.5 \cdot 0.01))}$$

11) Valeur actuelle de la rente différée basée sur la rente due Formule 🕝

Évaluer la formule

$$PV_{DA} = P_{D} \cdot \frac{1 - (1 + (IR \cdot 0.01))^{-n_{Periods}}}{(1 + (IR \cdot 0.01))^{t_{d} \cdot 1} \cdot (IR \cdot 0.01)}$$

 $132.3366 = 110 \cdot \frac{1 \cdot (1 + (5.5 \cdot 0.01))^{-2}}{(1 + (5.5 \cdot 0.01))^{9-1} \cdot (5.5 \cdot 0.01)}$

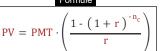
12) Valeur actuelle de la somme future compte tenu des périodes de composition Formule 🕝

 $PV = \frac{FV}{\left(1 + \left(\frac{\%ROR}{C_n}\right)\right)^{C_n \cdot n_{Periods}}} \left| 17.4524 = \frac{33000}{\left(1 + \left(\frac{4.5}{11}\right)\right)^{11 \cdot 2}} \right|$

13) Valeur actuelle de la somme future donnée Nombre de périodes Formule 🕝

 $PV = \frac{FV}{\exp(\%RoR \cdot n_{Periods})}$ $4.0725 = \frac{33000}{\exp(4.5 \cdot 2)}$

14) Valeur actuelle de la somme future donnée Nombre total de périodes Formule 🗂

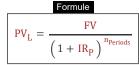

 $| PV = \frac{FV}{(1 + IR)^{t}} | 0.0104 = \frac{33000}{(1 + 5.5)^{8}}$

Évaluer la formule

Évaluer la formule 🕝

Évaluer la formule (

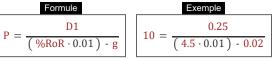
15) Valeur actuelle des rentes ordinaires et amortissement Formule 🕝



Formule Exemple

$$PV = PMT \cdot \left(\frac{1 - (1 + r)^{-n_c}}{r}\right) \left[593.9185 = 60 \cdot \left(\frac{1 - (1 + 0.05)^{-14}}{0.05}\right) \right]$$

Évaluer la formule 🕝


16) Valeur actuelle du montant forfaitaire Formule 🕝

Évaluer la formule (

17) Valeur actuelle du stock avec une croissance constante Formule 🕝

Formule
$$P = \frac{D1}{(\%RoR \cdot 0.01) - g}$$

Évaluer la formule (

Évaluer la formule (

18) Valeur actuelle du stock avec une croissance nulle Formule 🕝

$$PV_{CC} = \frac{FV}{e^{r \cdot n_{Periods}}}$$

Formule Exemple

$$PV_{cc} = \frac{FV}{e^{r \cdot n_{Periods}}}$$

$$29859.6348 = \frac{33000}{e^{0.05 \cdot 2}}$$

Variables utilisées dans la liste de Valeur actuelle Formules ci-dessus

- %RoR Taux de retour
- C_f Flux de trésorerie par période
- C_n Périodes composées
- D Dividende
- D1 Dividendes estimés pour la prochaine période
- DR Taux de remise
- F_{PV} Facteur de composition continue PV
- F_{PVA} Facteur de valeur actuelle de la rente
- FV Valeur future
- g Taux de croissance
- II Investissement initial
- IR Taux d'intérêt
- IR_p Taux d'intérêt par période
- n_c Nombre total de fois composé
- n_{Months} Nombre de mois
- n_{Periods} Nombre de périodes
- p Paiement mensuel
- P Prix des actions
- P_D Paiement de rente dû
- Po Paiement de rente ordinaire
- PMT Paiement effectué à chaque période
- PMT_{initial} Paiement initial
- PV Valeur actuelle
- PV_{AD} Valeur actuelle de la rente due
- PV_{cc} Valeur actuelle avec composition continue
- PV_{DA} Valeur actuelle de la rente différée
- ____
- PV_{ga} Valeur actuelle de la rente croissante
- PV_L Valeur actuelle du montant forfaitaire
- PV_p PV de Perpétuité
- PVAnnuity Valeur actuelle de la rente
- r Tarif par période
- t Nombre total de périodes
- t_d Périodes différées

Constantes, fonctions, mesures utilisées dans la liste des Valeur actuelle Formules ci-dessus

- constante(s): e,
 2.71828182845904523536028747135266249
 constante de Napier
- Les fonctions: exp, exp(Number)
 Dans une fonction exponentielle, la valeur de la fonction change d'un facteur constant pour chaque changement d'unité dans la variable indépendante.
- Les fonctions: In, In(Number)
 Le logarithme népérien, également appelé logarithme en base e, est la fonction inverse de la fonction exponentielle naturelle.

Téléchargez d'autres PDF Important La valeur temporelle de l'argent

- Important Bases de la valeur temporelle de l'argent Formules (*)
- Important Valeur future Formules
- Important Valeur actuelle Formules 🕝

Essayez nos calculatrices visuelles uniques

- Nourcentage du nombre
- Calculateur PPCM C

• **I** Fraction simple

Veuillez PARTAGER ce PDF avec quelqu'un qui en a besoin!

Ce PDF peut être téléchargé dans ces langues

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 6:29:29 AM UTC