Wichtig Manöver mit hohem Lastfaktor Formeln PDF

Formeln Beispiele mit Einheiten

Liste von 17

Wichtig Manöver mit hohem Lastfaktor **Formeln**

1) Änderung des Anstellwinkels aufgrund von Aufwärtsböen Formel 🕝

$$\Delta\alpha = \tan\left(\frac{u}{V}\right)$$

Formel Beispiel mit Einheiten
$$\Delta\alpha = \tan\left(\frac{u}{V}\right) \qquad 0.2397\, r_{ad} = \tan\left(\frac{8\, m/s}{34\, m/s}\right)$$

2) Auftriebskoeffizient für gegebene Tragflächenbelastung und Wenderadius Formel 🕝

Formel auswerten

Formel auswerten

$$C_L = 2 \cdot \frac{W_S}{\rho_{\infty} \cdot R \cdot [g]} \qquad 0.002 = 2 \cdot \frac{354 \, Pa}{1.225 \, kg/m^3 \cdot 29495.25 \, m \cdot 9.8066 m/s^2}$$

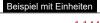
3) Auftriebskoeffizient für gegebene Wenderate Formel C

$$C_{L} = 2 \cdot W \cdot \frac{\omega^{2}}{\left[g\right]^{2} \cdot \rho_{\infty} \cdot n \cdot S}$$

Beispiel mit Einheiten

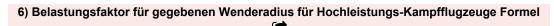
$$0.002 = 2 \cdot 1800 \, \text{N} \cdot \frac{1.144 \, \text{degree/s}}{9.8066 \, \text{m/s}^2}^2 \cdot 1.225 \, \text{kg/m}^3 \cdot 1.2 \cdot 5.08 \, \text{m}^2}$$

4) Auftriebskoeffizient für gegebenen Wenderadius Formel


Formel

$$C_{\rm L} = \frac{W}{0.5 \cdot \rho_{\infty} \cdot S \cdot [g] \cdot R}$$

$$C_L = \frac{W}{0.5 \cdot \rho_{\infty} \cdot S \cdot [\mathbf{g}] \cdot R} \qquad 0.002 = \frac{1800 \, \text{N}}{0.5 \cdot 1.225 \, \text{kg/m}^3 \, \cdot 5.08 \, \text{m}^2 \, \cdot 9.8066 \, \text{m/s}^2 \, \cdot 29495.25 \, \text{m}}$$


5) Belastungsfaktor für gegebene Wendegeschwindigkeit für Hochleistungs-Kampfflugzeuge Formel

Formel

Formel auswerten

Formel auswerten

Formel auswerten

$$n = \frac{v^2}{[g] \cdot R}$$

7) Flügelbelastung für gegebenen Wenderadius Formel 🕝

 $W_{S} = \frac{R \cdot \rho_{\infty} \cdot C_{L} \cdot [g]}{2}$

Beispiel mit Einheiten

Formel auswerten

$$\frac{1}{2} \frac{1}{2} \frac{1}{354.3308 \, \text{Pa}} = \frac{29495.25 \, \text{m} \cdot 1.225 \, \text{kg/m}^3 \cdot 0.002 \cdot 9.8066 \, \text{m/s}^2}{2}$$

8) Flügelbelastung für vorgegebene Wendegeschwindigkeit Formel 🕝

 $W_{S} = \left(\left[g\right]^{2}\right) \cdot \rho_{\infty} \cdot C_{L} \cdot \frac{n}{2 \cdot \left(\left.\omega\right|^{2}\right)}$

Beispiel mit Einheiten

$$354.6108 \, \text{Pa} \ = \left(9.8066 \, \text{m/s}^2 \, ^2 \right) \cdot 1.225 \, \text{kg/m}^2 \cdot 0.002 \cdot \frac{1.2}{2 \cdot \left(1.144 \, \text{degree/s}^2 \right)}$$

9) Geschwindigkeit für eine gegebene Pull-up-Manöverrate Formel C

 $V_{\text{pull-up}} = [g] \cdot \frac{n_{\text{pull-up}} - 1}{\omega} \left| \quad 240.1741 \,\text{m/s} \right| = 9.8066 \,\text{m/s}^2 \cdot \frac{1.489 - 1}{1.144 \,\text{degree}}$

Beispiel mit Einheiten

Formel auswerten

Formel auswerten

10) Geschwindigkeit gegebener Wenderadius für hohen Lastfaktor Formel C

 $v = \sqrt{R \cdot n \cdot [g]}$ | 589.1515 m/s = $\sqrt{29495.25 \, m \cdot 1.2 \cdot 9.8066 \, m/s^2}$

Beispiel mit Einheiten

Formel auswerten

11) Mindestfluggeschwindigkeit Formel

Formel

Formel auswerten

 $V_{\min} = \left| \left(\frac{W}{5} \right) \cdot \left(\frac{2}{\rho} \right) \cdot \left(\frac{1}{C_L} \right) \right|$

Beispiel mit Einheiten

$$589.9388 \,\mathrm{m/s} = \sqrt{\left(\frac{1800 \,\mathrm{N}}{4 \,\mathrm{m}^2}\right) \cdot \left(\frac{2}{1.293 \,\mathrm{kg/m}^3}\right) \cdot \left(\frac{1}{0.002}\right)}$$

Beispiel mit Einheiten

 $1.1445 \, \text{degree/s} = 9.8066 \, \text{m/s}^2 \cdot \frac{1.2}{589.15 \, \text{m/s}}$

13) Wenderadius bei gegebenem Auftriebskoeffizienten Formel 🕝

 $R = 2 \cdot \frac{W}{\rho_{\infty} \cdot S \cdot [g] \cdot C_{\tau}}$

Beispiel mit Einheiten

Formel auswerten

Formel auswerten [7]

Formel auswerten

Formel auswerten

14) Wenderadius bei vorgegebener Flügelbelastung Formel 🕝

Formel

Beispiel mit Einheiten

 $R = 2 \cdot \frac{W_S}{\rho_{\infty} \cdot C_L \cdot [g]} \left| \begin{array}{c} 29467.7175 \, \text{m} \\ \end{array} \right| = 2 \cdot \frac{354 \, \text{Pa}}{1.225 \, \text{kg/m}^2 \cdot 0.002 \cdot 9.8066 \, \text{m/s}^2}$

15) Wenderadius für hohen Lastfaktor Formel [

Beispiel mit Einheiten

 $R = \frac{v^2}{[g] \cdot n} \left[29495.0979 \,m \right] = \frac{589.15 \,m/s^2}{9.8066 \,m/s^2 \cdot 1.2}$

16) Wenderate bei gegebenem Auftriebskoeffizienten Formel 🕝

Formel auswerten

 $\omega = [g] \cdot \left(\sqrt{\frac{S \cdot \rho_{\infty} \cdot C_{L} \cdot n}{2 \cdot W}} \right)$

Beispiel mit Einheiten

 $1.1445\,\text{degree/s}\ =\ 9.8066\,\text{m/s}^2\ \cdot \left(\sqrt{\frac{5.08\,\text{m}^2\,\cdot 1.225\,\text{kg/m}^3\,\cdot 0.002\cdot 1.2}{2\cdot 1800\,\text{N}}}\right)$

17) Wenderate bei vorgegebener Flügelbelastung Formel 🕝

 $\omega = [g] \cdot \left(\int_{-\infty}^{\infty} C_{L} \cdot \frac{n}{2 \cdot W_{c}} \right)$

Beispiel mit Einheiten

 $1.145\,\text{degree/s}\ =\ 9.8066\,\text{m/s}^2\ \cdot \left(\sqrt{1.225\,\text{kg/m}^3\,\cdot\,0.002\,\cdot\,\frac{1.2}{2\cdot354\,\text{Pa}}}\right)$

In der Liste von Manöver mit hohem Lastfaktor Formeln oben verwendete Variablen

- 5 Bruttoflügelfläche des Flugzeugs (Quadratmeter)
- CI Auftriebskoeffizient
- n Ladefaktor
- n_{pull-up} Pull-Up-Lastfaktor
- R Wenderadius (Meter)
- S Referenzbereich (Quadratmeter)
- u Böengeschwindigkeit (Meter pro Sekunde)
- V Geschwindigkeit (Meter pro Sekunde)
- **V** Fluggeschwindigkeit (Meter pro Sekunde)
- V_{min} Minimale Fluggeschwindigkeit (Meter pro Sekunde)
- V_{pull-up} Geschwindigkeit des Pull-Up-Manövers (Meter pro Sekunde)
- W Flugzeuggewicht (Newton)
- W_S Flügelbelastung (Pascal)
- Δα Änderung des Anstellwinkels (Bogenmaß)
- **p** Luftdichte (Kilogramm pro Kubikmeter)
- ρ_∞ Freestream-Dichte (Kilogramm pro Kubikmeter)
- **ω** Drehrate (Grad pro Sekunde)

Konstanten, Funktionen, Messungen, die in der Liste von Manöver mit hohem Lastfaktor Formeln oben verwendet werden

- Konstante(n): [g], 9.80665
 Gravitationsbeschleunigung auf der Erde
- Funktionen: sqrt, sqrt(Number)
 Eine Quadratwurzelfunktion ist eine Funktion, die eine nicht negative Zahl als Eingabe verwendet und die Quadratwurzel der gegebenen Eingabezahl zurückgibt.
- Funktionen: tan, tan(Angle)
 Der Tangens eines Winkels ist ein
 trigonometrisches Verhältnis der Länge der einem
 Winkel gegenüberliegenden Seite zur Länge der
 an einen Winkel angrenzenden Seite in einem
 rechtwinkligen Dreieck.
- Messung: Länge in Meter (m)
 Länge Einheitenumrechnung (
- Messung: Bereich in Quadratmeter (m²)

 Bereich Einheitenumrechnung
- Messung: Druck in Pascal (Pa)
 Druck Einheitenumrechnung
- Messung: Geschwindigkeit in Meter pro Sekunde (m/s)
 Geschwindigkeit Einheitenumrechnung
- Messung: Macht in Newton (N)

 Macht Einheitenumrechnung
- Messung: Winkel in Bogenmaß (rad)
 Winkel Einheitenumrechnung
- Messung: Winkelgeschwindigkeit in Grad pro Sekunde (degree/s)
 Winkelgeschwindigkeit Einheitenumrechnung
- Messung: Dichte in Kilogramm pro Kubikmeter (kg/m³)

Dichte Einheitenumrechnung

Laden Sie andere Wichtig Manövrierflug-PDFs herunter

 Wichtig Manöver mit hohem Lastfaktor
 Wichtig Manöver zum Hochziehen und Formeln
 Herunterziehen Formeln

Probieren Sie unsere einzigartigen visuellen Rechner aus

- Gewinnprozentsatz
- KGV von zwei zahlen

• 37 Gemischter bruch (**)

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 6:23:11 AM UTC