Important Génération de poussée Formules PDF

Formules Exemples avec unités

Liste de 21

Important Génération de poussée Formules

1) Coefficient de poussée brute Formule 🕝

 $C_{Tg} = \frac{T_G}{F_i}$ 0.8189 = $\frac{868 \,\text{N}}{1060 \,\text{N}}$

2) Consommation de carburant spécifique à la poussée Formule 🕝

3) Consommation de carburant spécifique à la puissance de poussée Formule 🕝

4) Débit massique donné par l'élan dans l'air ambiant Formule 🕝

Exemple avec Unités $m_a = \frac{M}{V}$ 3.5 kg/s = $\frac{388.5 \text{ kg*m/s}}{111 \text{ m/s}}$

Évaluer la formule (

Évaluer la formule 🕝

Évaluer la formule (

5) Débit massique en fonction de la traînée du bélier et de la vitesse de vol Formule 🕝

Exemple avec Unités $m_a = \frac{D_{ram}}{V}$ 3.5045 kg/s = $\frac{389 \text{ N}}{111 \text{ m/s}}$

Évaluer la formule 🕝

Évaluer la formule (

6) Débit massique étant donné la poussée idéale Formule C

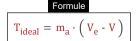
 $m_a = \frac{T_{ideal}}{V_e - V}$ 3.5 kg/s = $\frac{479.5 \text{ N}}{248 \text{ m/s} - 111 \text{ m/s}}$

$$M = m_a \cdot V$$
 388.5 kg*m/s = 3.5 kg/s · 111 m/s

8) Poussée brute Formule C

Formule Exemple avec Unités
$$T_{G} = m_{a} \cdot V_{e} \qquad 868 \, \text{N} = 3.5 \, \text{kg/s} \cdot 248 \, \text{m/s}$$

9) Poussée d'élan Formule C


$487.312 \,\mathrm{N} \,=\, 3.5 \,\mathrm{kg/s} \,\cdot \left(\, \left(\, 1 \,+\, 0.009\,\right) \,\cdot\, 248 \,\mathrm{m/s} \,\,\cdot\, 111 \,\mathrm{m/s}\,\,\right)$

10) Poussée donnée vitesse d'avancement de l'avion, vitesse d'échappement Formule 🕝

Formule
$$T_{\text{ideal}} = m_{\text{a}} \cdot \left(V_{\text{e}} - V \right)$$

Formule Exemple avec Unités
$$T_{ideal} = m_a \cdot \left(V_e - V \right) \qquad 479.5 \, \text{N} = 3.5 \, \text{kg/s} \cdot \left(248 \, \text{m/s} - 111 \, \text{m/s} \right)$$

11) Poussée idéale du moteur à réaction Formule Exemple avec Unités

$$T_{ideal} = m_a \cdot (V_e - V)$$
 479.5 N = 3.5 kg/s · (248 m/s - 111 m/s)

12) Poussée idéale étant donné le rapport de vitesse effectif Formule C Évaluer la formule 🕝

Formule
$$T_{ideal} = m_a \cdot V \cdot \left(\left(\frac{1}{\alpha} \right) - 1 \right)$$

13) Poussée spécifique Formule C

Formule
$$I_{sp} = V_e - V$$

Formule Exemple avec Unités
$$I_{sp} = V_e - V \qquad 137 \, \text{m/s} = 248 \, \text{m/s} - 111 \, \text{m/s}$$

Évaluer la formule (

Évaluer la formule 🕝

Évaluer la formule

Évaluer la formule 🦳

Évaluer la formule (

14) Poussée spécifique étant donné le rapport de vitesse effectif Formule 🕝

$$I_{sp} = V_e \cdot (1 - \alpha)$$
 | 137.02 m/s = 248 m/s · (1 - 0.4475)

15) Poussée totale compte tenu de l'efficacité et de l'enthalpie Formule 🕝

$$T_{total} = m_a \cdot \left(\left(\sqrt{2 \cdot \Delta h_{nozzle} \cdot \eta_{nozzle}} \right) - V + \left(\sqrt{\eta_T \cdot \eta_{transmission} \cdot \Delta h_{turbine}} \right) \right)$$

Évaluer la formule (

Exemple avec Unités

$$591.9372 \,\text{N} \, = \, 3.5 \,\text{kg/s} \, \cdot \left(\left(\sqrt{2 \cdot 12 \,\text{KJ} \cdot .24} \right) - \, 111 \,\text{m/s} \, + \left(\sqrt{0.86 \cdot 0.97 \cdot 50 \,\text{KJ}} \right) \right)$$

16) Puissance de poussée Formule C

Formule

Évaluer la formule 🕝

$$T_{p} = m_{a} \cdot V \cdot \left(V_{e} - V \right)$$

$$V) = 53.2245 \, \text{kW} = 3.5 \, \text{kg/s} \cdot 111 \, \text{m/s} \cdot (248 \, \text{m/s} - 111 \, \text{m/s})$$

17) Ram glisser Formule 🕝

Formule

Exemple avec Unités $388.5 \,\mathrm{N} = 3.5 \,\mathrm{kg/s} \cdot 111 \,\mathrm{m/s}$ Évaluer la formule

Évaluer la formule (

18) Vitesse après expansion étant donné la poussée idéale Formule 🕝

Exemple avec Unités

$$V_{e} = \frac{T_{ideal}}{m_{a}} + V$$

 $V_e = \frac{T_{ideal}}{m_e} + V$ $248 \text{ m/s} = \frac{479.5 \text{ N}}{3.5 \text{ kg/s}} + 111 \text{ m/s}$

19) Vitesse de vol compte tenu de l'élan de l'air ambiant Formule 🕝

Exemple avec Unités $V = \frac{M}{m_a} = \frac{388.5 \,\text{kg}^* \text{m/s}}{3.5 \,\text{kg/s}}$ Évaluer la formule 🕝

20) Vitesse de vol en fonction de la traînée du bélier et du débit massique Formule 🕝

Exemple avec Unités Évaluer la formule 🕝

21) Vitesse de vol étant donné la poussée idéale Formule 🕝

Exemple avec Unités

Évaluer la formule 🕝

 $V = V_e - \frac{T_{ideal}}{m_a}$ | 111 m/s = 248 m/s - $\frac{479.5 \text{ N}}{3.5 \text{ kg/s}}$

Variables utilisées dans la liste de Génération de poussée Formules cidessus

- C_{Ta} Coefficient de poussée brute
- D_{ram} Glissement du bélier (Newton)
- f Rapport air-carburant
- fa Rapport carburant/air
- Fi Poussée brute idéale (Newton)
- I_{sp} Poussée spécifique (Mètre par seconde)
- M Élan de l'air ambiant (Kilogramme mètre par seconde)
- **m**_a Débit massique (Kilogramme / seconde)
- m_f Débit de carburant (Kilogramme / seconde)
- T_G Poussée brute (Newton)
- Tideal Poussée idéale (Newton)
- Tp Puissance de poussée (Kilowatt)
- T_{total} Poussée totale (Newton)
- TPSFC Consommation de carburant spécifique à la puissance de poussée (Kilogramme / heure / kilowatt)
- TSFC Consommation de carburant spécifique à la poussée (Kilogramme / heure / Newton)
- **V** Vitesse de vol (Mètre par seconde)
- V_e Vitesse de sortie (Mètre par seconde)
- α Rapport de vitesse effectif
- Δh_{nozzle} Chute d'enthalpie dans la buse (Kilojoule)
- Ah_{turbine} Chute d'enthalpie dans la turbine (Kilojoule)
- η_{nozzle} Efficacité des buses
- η_T Efficacité des turbines
- ntransmission Efficacité de la transmission

Constantes, fonctions, mesures utilisées dans la liste des Génération de poussée Formules cidessus

- Les fonctions: sqrt, sqrt(Number)
 Une fonction racine carrée est une fonction qui
 prend un nombre non négatif comme entrée et
 renvoie la racine carrée du nombre d'entrée
 donné.
- La mesure: La rapidité in Mètre par seconde (m/s)
 - La rapidité Conversion d'unité 🕝
- La mesure: Énergie in Kilojoule (KJ)
 Énergie Conversion d'unité
- La mesure: Du pouvoir in Kilowatt (kW)
 Du pouvoir Conversion d'unité
- La mesure: Force in Newton (N)
 Force Conversion d'unité
- La mesure: Débit massique in Kilogramme / seconde (kg/s)
 - Débit massique Conversion d'unité 🕝
- La mesure: Élan in Kilogramme mètre par seconde (kg*m/s)
 - Élan Conversion d'unité 🕝
- La mesure: Consommation de carburant spécifique à la poussée in Kilogramme / heure / Newton (kg/h/N)
 Consommation de carburant spécifique à la poussée Conversion d'unité
- La mesure: Consommation spécifique de carburant in Kilogramme / heure / kilowatt (kg/h/kW)

Consommation spécifique de carburant Conversion d'unité

Téléchargez d'autres PDF Important Paramètres de performance

- Important Mesures d'efficacité
 Formules (*)
- Important Génération de poussée
 Formules

Essayez nos calculatrices visuelles uniques

- Pourcentage du nombre
- Calculateur PPCM

• **Image:** Fraction simple **C**

Veuillez PARTAGER ce PDF avec quelqu'un qui en a besoin!

Ce PDF peut être téléchargé dans ces langues

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 6:07:37 AM UTC