Wichtig Anforderungen zum Heben und Ziehen **Formeln PDF**

Formeln Beispiele mit Einheiten

Liste von 19

Wichtig Anforderungen zum Heben und Ziehen Formeln

1) Auftrieb für unbeschleunigten Flug Formel 🕝

Formel

$$F_{L} = W_{hody} - T \cdot \sin(\sigma_{T})$$

Beispiel mit Einheiten

$$F_L = W_{body} - T \cdot \sin(\sigma_T)$$
 220 N = 221 N - 100 N · sin(0.01 rad)

2) Auftrieb für waagerechten und unbeschleunigten Flug bei vernachlässigbarem Schubwinkel Formel

Formel Beispiel mit Einheiten $F_L = P_{dynamic} \cdot A \cdot C_L \qquad 220 \, \text{N} = 10 \, \text{Pa} \, \cdot 20 \, \text{m}^2 \, \cdot 1.1$

Beispiel mit Einheiten

3) Auftriebsbedingter Widerstandskoeffizient bei erforderlichem Schub Formel 🕝

Formel

 $C_{D,i} = \left(\frac{T}{P_{dynamic} \cdot S}\right) - C_{D,0}$ $0.94 = \left(\frac{100 \text{ N}}{10 \text{ Pa} \cdot 8 \text{ m}^2}\right) - 0.31$

Beispiel mit Einheiten

$$0.94 = \left(\frac{100\,\mathrm{N}}{10\,\mathrm{Pa}\,\cdot 8\,\mathrm{m}^2}\right) - 0.31$$

4) Auftriebskoeffizient angegebener Mindestschub Formel

Formel

$$C_{L} = \sqrt{\pi \cdot e \cdot AR \cdot \left(\left(\frac{T}{P_{dynamic} \cdot A} \right) - C_{D,0} \right)}$$

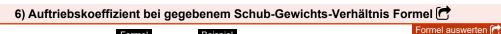
Beispiel mit Einheiten

$$1.1035 = \sqrt{3.1416 \cdot 0.51 \cdot 4 \cdot \left(\left(\frac{100 \,\text{N}}{10 \,\text{Pa} \cdot 20 \,\text{m}^2} \right) - 0.31 \right)}$$

5) Auftriebskoeffizient bei gegebenem Schub und Gewicht Formel 🕝

$$C_{L} = W_{body} \cdot \frac{C_{D}}{T}$$

Beispiel mit Einheiten


Formel auswerten

Formel auswerten [7]

Formel auswerten

Formel auswerten [7]

Formel auswerten

7) Auftriebs-Widerstand-Verhältnis bei erforderlichem Schub des Flugzeugs Formel

8) Freiströmungsgeschwindigkeit bei erforderlicher Leistung Formel

9) Freiströmungsgeschwindigkeit bei gegebener Gesamtwiderstandskraft Formel

10) Gesamtwiderstandskraft bei erforderlicher Leistung Formel 🕝

11) Luftwiderstandsbeiwert bei gegebenem Schub und Gewicht Formel 🕝

12) Luftwiderstandsbeiwert durch Auftrieb für minimale erforderliche Leistung Formel 🗂

13) Luftwiderstandskoeffizient bei gegebenem Schub-Gewichts-Verhältnis Formel

Formel auswerten

Formel auswerten

Formel auswerten 🦳

Formel auswerten (

Formel auswerten

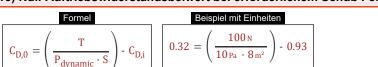
Formel auswerten

Formel auswerten

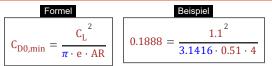
Formel auswerten

Formel auswerten

Formel auswerten


Formel auswerten

Formel auswerten


Formel auswerten

15) Null-Auftriebswiderstandsbeiwert bei erforderlichem Schub Formel

16) Null-Auftriebs-Widerstandsbeiwert bei minimalem erforderlichen Schub Formel

17) Nullauftriebswiderstandskoeffizient bei gegebenem Auftriebskoeffizienten Formel

$$C_{D,0} = \left(\frac{T}{P_{dynamic} \cdot A}\right) \cdot \left(\frac{C_L^2}{\pi \cdot e \cdot AR}\right)$$

$$0.3112 = \left(\frac{100 \,\text{N}}{10 \,\text{Pa} \cdot 20 \,\text{m}^2}\right) - \left(\frac{1.1^2}{3.1416 \cdot 0.51 \cdot 4}\right)$$

18) Widerstand für waagerechten und unbeschleunigten Flug bei vernachlässigbarem Schubwinkel Formel

19) Ziehen Sie für horizontalen und unbeschleunigten Flug Formel

In der Liste von Anforderungen zum Heben und Ziehen Formeln oben verwendete Variablen

- A Bereich (Quadratmeter)
- AR Seitenverhältnis eines Flügels
- C_D Widerstandskoeffizient
- C_{D.0} Null-Auftriebs-Luftwiderstandsbeiwert
- C_{D,i} Luftwiderstandsbeiwert durch Auftrieb
- C_{D0,min} Null-Auftriebs-Widerstandsbeiwert bei minimalem Schub
- C1 Auftriebskoeffizient
- e Oswald-Effizienzfaktor
- F_D Zugkraft (Newton)
- **F**_I Auftriebskraft (Newton)
- LD Verhältnis von Auftrieb zu Widerstand
- P Leistung (Watt)
- P_{dvnamic} Dynamischer Druck (Pascal)
- S Bezugsfläche (Quadratmeter)
- T Schub (Newton)
- TW Schub-Gewichts-Verhältnis
- V_∞ Freestream-Geschwindigkeit (Meter pro Sekunde)
- W_{body} Körpergewicht (Newton)
- σ_T Schubwinkel (Bogenmaß)

Konstanten, Funktionen, Messungen, die in der Liste von Anforderungen zum Heben und Ziehen Formeln oben verwendet werden

- Konstante(n): pi, 3.14159265358979323846264338327950288 Archimedes-Konstante
- Funktionen: cos, cos(Angle)
 Der Kosinus eines Winkels ist das Verhältnis der an den Winkel angrenzenden Seite zur Hypothenuse des Dreiecks.
- Funktionen: sin, sin(Angle)
 Sinus ist eine trigonometrische Funktion, die das Verhältnis der Länge der gegenüberliegenden Seite eines rechtwinkligen Dreiecks zur Länge der Hypothenuse beschreibt.
- Funktionen: sqrt, sqrt(Number)
 Eine Quadratwurzelfunktion ist eine Funktion, die
 eine nicht negative Zahl als Eingabe verwendet
 und die Quadratwurzel der gegebenen
 Eingabezahl zurückgibt.
- Messung: Bereich in Quadratmeter (m²)
 Bereich Einheitenumrechnung
- Messung: Druck in Pascal (Pa)
 Druck Einheitenumrechnung
- Messung: Geschwindigkeit in Meter pro Sekunde (m/s)
 Geschwindigkeit Einheitenumrechnung
- Messung: Leistung in Watt (W)
 Leistung Einheitenumrechnung
- Messung: Macht in Newton (N)

 Macht Einheitenumrechnung
- Messung: Winkel in Bogenmaß (rad)
 Winkel Einheitenumrechnung

Laden Sie andere Wichtig Horizontaler Flug-PDFs herunter

- Wichtig Anforderungen zum Heben und Ziehen Formeln (*)
- Wichtig Schub- und Leistungsanforderungen Formeln

Probieren Sie unsere einzigartigen visuellen Rechner aus

- 🎇 Prozentualer Rückgang 🕝
- GGT von drei zahlen
- 374 Bruch multiplizieren 🕝

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 6:04:13 AM UTC