Important Flow Regime Formulas PDF

Formulas Examples with Units

List of 17 Important Flow Regime Formulas

1) Circumferential stress developed in pipe wall Formula 🕝

Evaluate Formula

FormulaExample with Units $\sigma_c = \frac{p \cdot D}{2 \cdot t_p}$ $6.8E + 7_{N/m^2} = \frac{1.7E + 7_{N/m^2} \cdot 0.12_m}{2 \cdot 0.015_m}$

2) Coefficient of contraction for sudden contraction Formula

FormulaExample with UnitsEvaluate Formula
$$C_c = \frac{V_2'}{V_2' + \sqrt{h_c \cdot 2 \cdot [g]}}$$
 $0.5995 = \frac{2.89 \text{ m/s}}{2.89 \text{ m/s} + \sqrt{0.19 \text{ m} \cdot 2 \cdot 9.8066 \text{ m/s}^2}}$

6) Retarding force for gradual closure of valves Formula 🗂		
Formula	Example with Units	Evaluate Formula
$F_{\rm r} = \rho' \cdot A \cdot L \cdot \frac{V_{\rm f}}{t_{\rm c}}$	$319.889 \text{m} = 1010 \text{kg/m}^3 \cdot 0.0113 \text{m}^2 \cdot 1200 \text{m} \cdot \frac{12.5 \text{m/s}}{535.17 \text{s}}$	

14) Velocity of Flow at outlet of Nozzle for Efficiency and Head Formula 🕝

FormulaExample with Units
$$V_f = \sqrt{\eta_n \cdot 2 \cdot [g] \cdot H_{bn}}$$
 $21.1467 \text{ m/s} = \sqrt{0.8 \cdot 2 \cdot 9.8066 \text{ m/s}^2 \cdot 28.5 \text{ m}}$

15) Velocity of Fluid for Head Loss due to Obstruction in Pipe Formula 🕝

Formula
 Example with Units

$$V_f = \frac{\sqrt{H_o \cdot 2 \cdot [g]}}{\left(\frac{A}{C_c \cdot (A - A')}\right) - 1}$$
 12.4919 m/s = $\frac{\sqrt{7.36 \text{ m} \cdot 2 \cdot 9.8066 \text{ m/s}^2}}{\left(\frac{0.0113 \text{ m}^2}{0.6 \cdot (0.0113 \text{ m}^2 - 0.0017 \text{ m})}\right) - 1}$

16) Velocity of fluid in pipe for head loss at entrance of pipe Formula 🕝

FormulaExample with Units
$$v = \sqrt{\frac{h_i \cdot 2 \cdot [g]}{0.5}}$$
12.4949 m/s = $\sqrt{\frac{3.98 \text{ m} \cdot 2 \cdot 9.8066 \text{ m/s}^2}{0.5}}$

17) Velocity of liquid at vena-contracta Formula 🕝

FormulaExample with UnitsEvaluate Formula
$$V_c = \frac{A \cdot V_f}{C_c \cdot (A - A')}$$
 $24.5226 \,\mathrm{m/s} = \frac{0.0113 \,\mathrm{m^2} \cdot 12.5 \,\mathrm{m/s}}{0.6 \cdot (0.0113 \,\mathrm{m^2} - 0.0017 \,\mathrm{m})}$ $E_{c} = \frac{1000 \,\mathrm{m^2}}{1000 \,\mathrm{m^2}}$

Evaluate Formula

Evaluate Formula

Evaluate Formula

Variables used in list of Flow Regime Formulas above

- A Cross Sectional Area of Pipe (Square Meter)
- A' Maximum Area of Obstruction (Meter)
- **a**₂ Nozzle Area at Outlet (Square Meter)
- a_l Acceleration of Liquid (Meter per Square Second)
- C Velocity of Pressure Wave (Meter per Second)
- C_c Coefficient of Contraction in Pipe
- D Diameter of Pipe (Meter)
- Deg Diameter of Equivalent Pipe (Meter)
- F Force (Newton)
- F_r Retarding Force on Liquid in Pipe (Newton)
- H_{bn} Head at Base of Nozzle (Meter)
- h_c Loss of Head Sudden Contraction (Meter)
- h_e Loss of Head Sudden Enlargement (Meter)
- h_i Head Loss at Pipe Entrance (Meter)
- H_I Loss of Head in Equivalent Pipe (Meter)
- ho Head Loss at Pipe Exit (Meter)
- H_o Loss of Head Due to Obstruction in Pipe (Meter)
- I Intensity of Pressure of Wave (Newton per Square Meter)
- L Length of Pipe (Meter)
- M_w Mass of Water (Kilogram)
- **p** Pressure Rise at Valve (Newton per Square Meter)
- **Q** Discharge through Pipe (Cubic Meter per Second)
- t Time Taken to Travel (Second)
- t_c Time Required to Close Valve (Second)
- tp Thickness of Liquid Carrying Pipe (Meter)
- Velocity (Meter per Second)
- V₁' Velocity of Fluid at Section 1 (Meter per Second)

Constants, Functions, Measurements used in list of Flow Regime Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- constant(s): [g], 9.80665
 Gravitational acceleration on Earth
- Functions: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Weight in Kilogram (kg) Weight Unit Conversion
- Measurement: Time in Second (s)
 Time Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Pressure in Newton per Square Meter (N/m²) Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²) Acceleration Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)
 Density Unit Conversion C
- Measurement: Stress in Newton per Square Meter (N/m²) Stress Unit Conversion

- V2' Velocity of Fluid at Section 2 (Meter per Second)
- Vc Velocity of Liquid Vena Contracta (Meter per Second)
- V_f Flow Velocity through Pipe (Meter per Second)
- η_n Efficiency for Nozzle
- µ Coefficient of Friction of Pipe
- ρ' Density of Fluid Inside the Pipe (Kilogram per Cubic Meter)
- σ_c Circumferential Stress (Newton per Square Meter)
- σ_I Longitudinal Stress (Newton per Square Meter)

Important Flow Regime Formulas C

Try our Unique Visual Calculators

Percentage of number

• 🎆 LCM calculator 🕝

Simple fraction C

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 12:00:03 PM UTC

