Wichtig Prüflast auf die Feder Formeln PDF

Formeln Beispiele mit Einheiten

Liste von 18

Wichtig Prüflast auf die Feder Formeln

Formel auswerten

Formel auswerten

Formel auswerten

Formel auswerten

1) Blattfedern Formeln

1.1) Anzahl der Platten mit Prüflast auf der Blattfeder Formel

$$n = \frac{3 \cdot W_{0 \text{ (Leaf Spring)}} \cdot L^{3}}{8 \cdot E \cdot b \cdot t^{3} \cdot \delta}$$

Beispiel mit Einheiten

$$n = \frac{3 \cdot W_{0 \text{ (Leaf Spring)}} \cdot L^{3}}{8 \cdot E \cdot b \cdot t^{3} \cdot \delta} \qquad 8.0111 = \frac{3 \cdot 585 \text{ kN} \cdot 4170 \text{ mm}^{3}}{8 \cdot 20000 \text{ MPa} \cdot 300 \text{ mm} \cdot 460 \text{ mm}^{3} \cdot 3.4 \text{ mm}}$$

1.2) Breite angegeben Prüflast auf Blattfeder Formel

$$b = \frac{3 \cdot W_{0 \text{ (Leaf Spring)}} \cdot L^{3}}{8 \cdot E \cdot n \cdot t^{3} \cdot \delta}$$

Beispiel mit Einheiten

$$b = \frac{3 \cdot W_{0 \text{ (Leaf Spring)}} \cdot L^{3}}{8 \cdot E \cdot n \cdot t^{3} \cdot \delta}$$

$$300.4159 \text{ mm} = \frac{3 \cdot 585 \text{ kN} \cdot 4170 \text{ mm}}{8 \cdot 20000 \text{ MPa} \cdot 8 \cdot 460 \text{ mm}}^{3} \cdot 3.4 \text{ mm}$$

1.3) Dicke bei der Prüflast der Blattfeder Formel

$$t = \left(\frac{3 \cdot W_{0 \text{ (Leaf Spring)}} \cdot L^{3}}{8 \cdot E \cdot n \cdot \delta \cdot b}\right)^{\frac{1}{3}}$$

Beispiel mit Einheiten

$$460.2125 \, \text{mm} = \left(\frac{3 \cdot 585 \, \text{kN} \cdot 4170 \, \text{mm}^{3}}{8 \cdot 20000 \, \text{MPa} \cdot 8 \cdot 3.4 \, \text{mm} \cdot 300 \, \text{mm}} \right)^{\frac{1}{3}}$$

1.4) Durchbiegung bei Prüflast der Blattfeder Formel 🗂

$$\delta = \frac{3 \cdot W_{0 \; (Leaf \, Spring)} \cdot L^{3}}{8 \cdot E \cdot n \cdot t^{3} \cdot b}$$

$$\delta = \frac{3 \cdot W_{0 \text{ (Leaf Spring)}} \cdot L^{3}}{8 \cdot E \cdot n \cdot t^{3} \cdot b} \qquad 3.4047 \text{ mm} = \frac{3 \cdot 585 \text{ kN} \cdot 4170 \text{ mm}}{8 \cdot 20000 \text{ MPa} \cdot 8 \cdot 460 \text{ mm}} \cdot 300 \text{ mm}$$

1.5) Elastizitätsmodul bei Prüflast der Blattfeder Formel C

Beispiel mit Einheiten

 $E = \frac{3 \cdot W_{0 \text{ (Leaf Spring)}} \cdot L^{3}}{8 \cdot n \cdot h \cdot t^{3} \cdot \delta} \bigg| 20027.7262 \, MPa = \frac{3 \cdot 585 \, kN \cdot 4170 \, mm^{3}}{8 \cdot 8 \cdot 300 \, mm \cdot 460 \, mm^{3} \cdot 3.4 \, mm^{3}}$

1.6) Länge angegeben Prüflast auf Blattfeder Formel

 $L = \left(\frac{8 \cdot E \cdot n \cdot b \cdot t^{3} \cdot \delta}{3 \cdot W_{0, (l, ast Spring)}}\right)^{\frac{3}{3}}$

Beispiel mit Einheiten

$$4168.0748 \, \text{mm} = \left(\frac{8 \cdot 20000 \, \text{MPa} \cdot 8 \cdot 300 \, \text{mm} \cdot 460 \, \text{mm}}{3 \cdot 585 \, \text{kN}}\right)^{\frac{1}{3}}$$

1.7) Prüflast auf Blattfeder Formel

$$W_{0 \text{ (Leaf Spring)}} = \frac{8 \cdot E \cdot n \cdot b \cdot t^{3} \cdot \delta}{3 \cdot L^{3}}$$

Beispiel mit Einheiten

 $584.1901 \, \text{kN} = \frac{8 \cdot 20000 \, \text{MPa} \cdot 8 \cdot 300 \, \text{mm} \cdot 460 \, \text{mm}}{3 \cdot 4170 \, \text{mm}}^{3} \cdot 3.4 \, \text{mm}}{3 \cdot 4170 \, \text{mm}}^{3}$

2) Viertelelliptische Federn Formeln

2.1) Anzahl der Platten mit Prüflast in elliptischer Viertelfeder Formel

 $n = \frac{6 \cdot W_{0 \text{ (Elliptical Spring)}} \cdot L^{3}}{E \cdot b \cdot t^{3} \cdot \delta} \bigg| \bigg| 8.1069 = \frac{6 \cdot 37 \text{ kN} \cdot 4170 \text{ mm}^{3}}{20000 \text{ MPa} \cdot 300 \text{ mm} \cdot 460 \text{ mm}^{3} \cdot 3.4 \text{ m}^{3}}$

2.2) Breite bei gegebener Prüflast in elliptischer Viertelfeder Formel

Beispiel mit Einheiten

 $b = \frac{6 \cdot W_{0 \text{ (Elliptical Spring)}} \cdot L^{3}}{E \cdot n \cdot t^{3} \cdot \delta}$ $304.0106 \text{ mm} = \frac{6 \cdot 37 \text{ kN} \cdot 4170 \text{ mm}}{20000 \text{ MPa} \cdot 8 \cdot 460 \text{ mm}}^{3} \cdot 3.4 \text{ mm}$

Formel auswerten 🕝

Formel auswerten

Formel auswerten

Formel auswerten

2.3) Dicke bei Nachweislast in elliptischer Viertelfeder Formel

$$t = \left(\frac{6 \cdot W_{0 \text{ (Elliptical Spring)}} \cdot L^{3}}{E \cdot n \cdot \delta \cdot b}\right)^{\frac{1}{3}}$$

Beispiel mit Einheiten

$$462.0408 \, \text{mm} = \left(\frac{6 \cdot 37 \, \text{kN} \cdot 4170 \, \text{mm}}{20000 \, \text{MPa} \cdot 8 \cdot 3.4 \, \text{mm} \cdot 300 \, \text{mm}}\right)^{\frac{1}{3}}$$

2.4) Durchbiegung bei Prüflast in elliptischer Viertelfeder Formel

Formel

$$\delta = \frac{6 \cdot W_{0 \; (Elliptical \; Spring)} \cdot L^{3}}{E \cdot n \cdot t^{3} \cdot b}$$

Beispiel mit Einheiten

$$.4455 \, \text{mm} = \frac{6 \cdot 37 \, \text{kN} \cdot 4170 \, \text{mm}^{3}}{20000 \, \text{MPa} \cdot 8 \cdot 460 \, \text{mm}^{3} \cdot 300 \, \text{mm}}$$

2.5) Elastizitätsmodul bei Prüflast in elliptischer Viertelfeder Formel 🕝

Formel

$$E = \frac{6 \cdot W_{0 \text{ (Elliptical Spring)}} \cdot L^{3}}{n \cdot b \cdot t^{3} \cdot \delta}$$

Beispiel mit Einheiten

$$E = \frac{6 \cdot W_{0 \text{ (Elliptical Spring)}} \cdot L^{3}}{n \cdot b \cdot t^{3} \cdot \delta} \qquad 20267.3742 \, \text{MPa} = \frac{6 \cdot 37 \, \text{kN} \cdot 4170 \, \text{mm}^{3}}{8 \cdot 300 \, \text{mm} \cdot 460 \, \text{mm}^{3} \cdot 3.4 \, \text{mm}}$$

2.6) Länge bei der Prüflast in elliptischer Viertelfeder Formel 🕝

$$L = \left(\frac{E \cdot n \cdot b \cdot t^3 \cdot \delta}{6 \cdot W_{0 \text{ (Elliptical Spring)}}}\right)^{\frac{1}{3}}$$

Beispiel mit Einheiten

$$4151.5814_{\,mm} \; = \left(\frac{20000\,{}_{MPa}\,\cdot 8\cdot 300_{\,mm}\,\cdot 460_{\,mm}}{6\cdot 37_{\,kN}}\right)^{\frac{1}{3}}$$

Formel auswerten

Formel auswerten [

Formel auswerten

Formel auswerten [

2.7) Prüflast in viertel elliptischer Feder Formel C

$$W_{0 \text{ (Elliptical Spring)}} = \frac{E \cdot n \cdot b \cdot t^{3} \cdot \delta}{6 \cdot L^{3}}$$

Beispiel mit Einheiten

$$36.5119_{kN} = \frac{20000_{MPa} \cdot 8 \cdot 300_{mm} \cdot 460_{mm}^{3} \cdot 3.4_{mm}}{6 \cdot 4170_{mm}^{3}}$$

3) Federn in Parallel- und Reihenlast Formeln [

3.1) Federn in Reihe – Durchbiegung Formel 🕝

3.2) Federn in Reihe – Federkonstante Formel 🕝

Formel

Beispiel mit Einheiten

3.3) Federn parallel - Federkonstante Formel []

Beispiel mit Einheiten

$$100 \,\text{N/mm} = 49 \,\text{N/mm} + 51 \,\text{N/mm}$$

3.4) Federn parallel - Last Formel C

Formel
$$W_{load} = W_1 + W_2$$

Beispiel mit Einheiten 85
$$N = 35N + 50N$$

Formel auswerten (

Formel auswerten

Formel auswerten

Formel auswerten

In der Liste von Prüflast auf die Feder Formeln oben verwendete Variablen

- b Breite des Querschnitts (Millimeter)
- E Elastizitätsmodul (Megapascal)
- K Federsteifigkeit (Newton pro Millimeter)
- **K**₁ Federsteifigkeit 1 (Newton pro Millimeter)
- K₂ Federsteifigkeit 2 (Newton pro Millimeter)
- L Länge im Frühling (Millimeter)
- n Anzahl der Platten
- t Dicke des Abschnitts (Millimeter)
- W₁ Laden Sie 1 (Newton)
- W₂ Laden Sie 2 (Newton)
- W_{load} Federlast (Newton)
- W_O (Elliptical Spring) Prüflast auf elliptische Feder (Kilonewton)
- W_O (Leaf Spring) Prüflast auf Blattfeder (Kilonewton)
- δ Durchbiegung der Feder (Millimeter)
- δ₁ Ablenkung 1 (Millimeter)
- δ₂ Ablenkung 2 (Millimeter)

Konstanten, Funktionen, Messungen, die in der Liste von Prüflast auf die Feder Formeln oben verwendet werden

- Messung: Länge in Millimeter (mm)
 Länge Einheitenumrechnung
- Messung: Macht in Kilonewton (kN), Newton (N)
 Macht Einheitenumrechnung
- Messung: Steifigkeitskonstante in Newton pro Millimeter (N/mm)
 Steifigkeitskonstante Einheitenumrechnung
- Messung: Betonen in Megapascal (MPa)
 Betonen Einheitenumrechnung

Laden Sie andere Wichtig Frühling-PDFs herunter

- Wichtig Durchbiegung im Frühjahr Formeln (
- Wichtig Maximale Biegespannung im
 Wichtig Steifheit Formeln Frühjahr Formeln
- Wichtig Prüflast auf die Feder Formeln (

Probieren Sie unsere einzigartigen visuellen Rechner aus

- Prozentualer Wachstum
- KGV rechner C

📆 Dividiere bruch 🗂

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 11:56:57 AM UTC