Formules importantes d'efficacité et de résistance du courant Formules PDF

Formules Exemples avec unités

Liste de 15

Formules importantes d'efficacité et de résistance du courant Formules

1) Constante de cellule compte tenu de la résistance et de la résistivité Formule 🕝

Exemple avec Unités $b = \left(\frac{R}{\rho}\right) \left[5.9412_{1/m} = \left(\frac{0.000101_{\Omega}}{0.000017_{\Omega^*m}}\right) \right]$

Exemple avec Unités

3) Efficacité actuelle Formule

2) Distance entre l'électrode étant donné la résistance et la résistivité Formule 🕝

Exemple avec Unités $C.E = \left(\frac{A}{m_t}\right) \cdot 100 \qquad 97.8261 = \left(\frac{45 \,\mathrm{g}}{46 \,\mathrm{g}}\right) \cdot 100$

4) Loi Kohlrausch Formule C

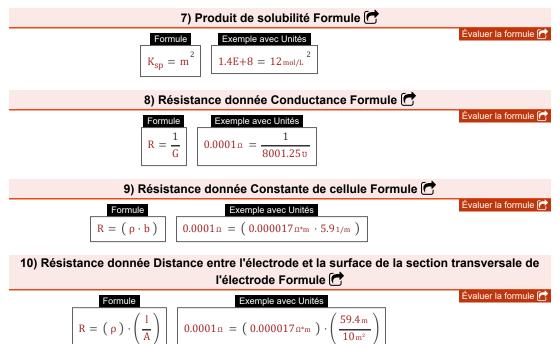
Formule

Exemple avec Unités $\Lambda_{\rm m} = \Lambda 0 \, {\rm m} \cdot \left(\, {\rm K} \cdot \sqrt{c} \, \right) \, \left| \, 46.1026 \, {\rm s^*m^2/mol} \, = \, 48 \, {\rm s^*m^2/mol} \, \cdot \left(\, 60 \cdot \sqrt{0.001} \, \right) \right|$ Évaluer la formule 🕝

Évaluer la formule 🦳

Évaluer la formule (

Évaluer la formule (


5) Masse de métal à déposer Formule 🕝

6) Pression idéale compte tenu du coefficient osmotique Formule [7]

Formule Exemple avec Unites $\pi_0 = \frac{\pi}{\Phi - 1}$ $50_{at} = \frac{200_{at}}{5 - 1}$

Évaluer la formule (

Évaluer la formule 🕝

$$\rho = R \cdot \frac{A}{l} \qquad 1.7E - 5 \Omega^* m \ = \ 0.000101 \Omega \cdot \frac{10 \, m^2}{59.4 \, m}$$

12) Résistivité donnée Conductance spécifique Formule 🕝

13) Solubilité Formule 🕝

Formule Exemple avec Unités
$$S = k_{conductance} \cdot \frac{1000}{\Lambda 0m} \qquad 1250 \, {}_{mol/L} = 60000 \, {}_{s/m} \cdot \frac{1000}{48 \, s^* m^2/mol}$$

14) Surpression donnée Coefficient osmotique Formule

Évaluer la formule 🕝

Évaluer la formule

Évaluer la formule 🕝

Évaluer la formule 🕝

Formule

Exemple avec Unités

Évaluer la formule 🕝

 $A = \frac{\rho \cdot l}{R}$

 $9.998\,\text{m}^2\,=\,\frac{0.000017\,\Omega^*\text{m}\,\cdot\,59.4\,\text{m}}{0.000101\,\Omega}$

Variables utilisées dans la liste de Formules importantes d'efficacité et de résistance du courant ci-dessus

- A Zone de section transversale de l'électrode (Mètre carré)
- A Masse réelle déposée (Gramme)
- b Constante de cellule (1 par mètre)
- C Concentration d'électrolyte
- C.E Efficacité actuelle
- G Conductance (Mho)
- **i**_p Courant électrique (Ampère)
- K Coefficient de Kohlrausch
- k_{conductance} Conductance spécifique (Siemens / mètre)
- K_{sp} Produit de solubilité
- I Distance entre les électrodes (Mètre)
- m Solubilité molaire (mole / litre)
- M_{metal} Masse à déposer (Gramme)
- m_t Masse théorique déposée (Gramme)
- MW Masse moléculaire (Gramme)
- nf Facteur N
- R Résistance (Ohm)
- S Solubilité (mole / litre)
- t Temps en heures (Heure)
- Λ_m Conductivité molaire (Mètre carré Siemens par mole)
- N0m Limitation de la conductivité molaire (Mètre carré Siemens par mole)
- π Excès de pression osmotique (Atmosphère technique)
- π₀ Pression idéale (Atmosphère technique)
- ρ Résistivité (ohmmètre)
- Coefficient osmotique

Constantes, fonctions, mesures utilisées dans la liste des Formules importantes d'efficacité et de résistance du courant ci-dessus

- constante(s): [Faraday], 96485.33212 constante de Faraday
- Les fonctions: sqrt, sqrt(Number)
 Une fonction racine carrée est une fonction qui
 prend un nombre non négatif comme entrée et
 renvoie la racine carrée du nombre d'entrée
 donné
- La mesure: Longueur in Mètre (m)
 Longueur Conversion d'unité ()
- La mesure: Lester in Gramme (g)
 Lester Conversion d'unité
- La mesure: Temps in Heure (h)
 Temps Conversion d'unité
- La mesure: Courant électrique in Ampère (A)
 Courant électrique Conversion d'unité
- La mesure: Zone in Mètre carré (m²)
 Zone Conversion d'unité
- La mesure: Pression in Atmosphère technique (at)
 - Pression Conversion d'unité 🕝
- La mesure: Résistance électrique in Ohm (Ω)
 Résistance électrique Conversion d'unité

 Conversion d'unité (2)
- La mesure: Conductivité électrique in Mho (T)

 Conductivité électrique Conversion d'unité
- La mesure: Résistivité électrique in ohmmètre (Ω*m)
 - Résistivité électrique Conversion d'unité
- La mesure: Conductivité électrique in Siemens / mètre (S/m)
 - Conductivité électrique Conversion d'unité
- La mesure: Concentration molaire in mole / litre (mol/L)
 Concentration molaire Conversion d'unité
- La mesure: Numéro de vague in 1 par mètre (1/m)
- (1/m) Numéro de vague Conversion d'unité
- La mesure: Conductivité molaire in Mètre carré Siemens par mole (S*m²/mol)
 Conductivité molaire Conversion d'unité

Téléchargez d'autres PDF Important Électrochimie

- Important Activité des électrolytes Formules (
- Important Concentration d'électrolyte
 Important Force ionique Formules () Formules
- Important Conductance et conductivité Formules (
- Important Cellule électrochimique Formules [
- Important Électrolytes Formules
- Important EMF de la cellule de concentration Formules

- Important Poids équivalent Formules ()
- Important Coefficient osmotique
 - Formules
- Important Résistance et résistivité Formules
- Important Pente de Tafel Formules
- Important Température de la cellule de concentration Formules

Essayez nos calculatrices visuelles uniques

- M Pourcentage de croissance
- Calculateur PPCM

Diviser fraction

Veuillez PARTAGER ce PDF avec quelqu'un qui en a besoin !

Ce PDF peut être téléchargé dans ces langues

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 1:59:39 PM UTC