Important Load Distribution to Bents and Shear Walls Formulas PDF

Formulas Examples with Units

List of 11

Important Load Distribution to Bents and Shear Walls Formulas

1) Concentrated Load given Deflection at Top Formula C

Evaluate Formula

$$P = \frac{\delta \cdot E \cdot t}{4 \cdot \left(\left(\left(\frac{H}{L}\right)^{3}\right) + \left(0.75 \cdot \left(\frac{H}{L}\right)\right)\right)}$$

Example with Units

$$516.5165_{\text{kN}} = \frac{0.172_{\text{m}} \cdot 20_{\text{MPa}} \cdot 0.4_{\text{m}}}{4 \cdot \left(\left(\left(\frac{15_{\text{m}}}{25_{\text{m}}} \right)^{3} \right) + \left(0.75 \cdot \left(\frac{15_{\text{m}}}{25_{\text{m}}} \right) \right) \right)}$$

2) Concentrated Load given Deflection at Top Due to Fixed against Rotation Formula 🕝

Example with Units

Evaluate Formula [

$$P = \frac{\delta \cdot E \cdot t}{\left(\frac{H}{L}\right)^3 + \left(3 \cdot \left(\frac{H}{L}\right)\right)}$$

$$682.5397 \, \text{kN} \, = \frac{0.172 \, \text{m} \, \cdot 20 \, \text{MPa} \, \cdot 0.4 \, \text{m}}{\left(\frac{15 \, \text{m}}{25 \, \text{m}}\right)^3 + \left(3 \cdot \left(\frac{15 \, \text{m}}{25 \, \text{m}}\right)\right)}$$

3) Deflection at Top due to Concentrated Load Formula C

Evaluate Formula (

$$\delta = \left(\frac{4 \cdot P}{E \cdot t}\right) \cdot \left(\left(\frac{H}{L}\right)^3 + 0.75 \cdot \left(\frac{H}{L}\right)\right)$$

$$0.172_{\,\text{m}} \, = \left(\frac{4 \cdot 516.51_{\,\text{kN}}}{20_{\,\text{MPa}} \cdot 0.4_{\,\text{m}}}\right) \cdot \left(\left(\frac{15_{\,\text{m}}}{25_{\,\text{m}}}\right)^3 + 0.75 \cdot \left(\frac{15_{\,\text{m}}}{25_{\,\text{m}}}\right)\right)$$

4) Deflection at Top due to Fixed against Rotation Formula 🕝

$$\delta = \left(\frac{P}{E \cdot t}\right) \cdot \left(\left(\frac{H}{L}\right)^3 + 3 \cdot \left(\frac{H}{L}\right)\right)$$

Example with Units

$$0.1302_{\text{m}} = \left(\frac{516.51_{\text{kN}}}{20_{\text{MPa}} \cdot 0.4_{\text{m}}}\right) \cdot \left(\left(\frac{15_{\text{m}}}{25_{\text{m}}}\right)^{3} + 3 \cdot \left(\frac{15_{\text{m}}}{25_{\text{m}}}\right)\right)$$

5) Deflection at Top due to Uniform Load Formula [7]

Formula

$$\delta = \left(\frac{1.5 \cdot w \cdot H}{E \cdot t}\right) \cdot \left(\left(\frac{H}{L}\right)^3 + \left(\frac{H}{L}\right)\right)$$

$$0.1721_{\,\mathrm{m}} \, = \left(\frac{1.5 \cdot 75_{\,\mathrm{kN}} \, \cdot 15_{\,\mathrm{m}}}{20_{\,\mathrm{MPa}} \cdot 0.4_{\,\mathrm{m}}}\right) \cdot \left(\left(\frac{15_{\,\mathrm{m}}}{25_{\,\mathrm{m}}}\right)^{\!3} + \left(\frac{15_{\,\mathrm{m}}}{25_{\,\mathrm{m}}}\right)\right)$$

6) Modulus of Elasticity given Deflection at Top Due to Concentrated Load Formula 🕝

Evaluate Formula

Evaluate Formula 🕝

Evaluate Formula

Evaluate Formula

$$\mathbf{E} = \left(\frac{4 \cdot \mathbf{P}}{\delta \cdot \mathbf{t}}\right) \cdot \left(\left(\frac{\mathbf{H}}{\mathbf{L}}\right)^3 + 0.75 \cdot \left(\frac{\mathbf{H}}{\mathbf{L}}\right)\right)$$

Example with Units

$$19.9997_{\text{MPa}} = \left(\frac{4 \cdot 516.51_{\text{kN}}}{0.172_{\text{m}} \cdot 0.4_{\text{m}}}\right) \cdot \left(\left(\frac{15_{\text{m}}}{25_{\text{m}}}\right)^{3} + 0.75 \cdot \left(\frac{15_{\text{m}}}{25_{\text{m}}}\right)\right)$$

7) Modulus of Elasticity given Deflection at Top Due to Fixed against Rotation Formula C

$$E = \left(\frac{P}{\delta \cdot t}\right) \cdot \left(\left(\frac{H}{L}\right)^3 + 3 \cdot \left(\frac{H}{L}\right)\right)$$

Example with Units

$$15.1349\,{}_{MPa}\,=\left(\frac{516.51\,{}_{kN}}{0.172\,{}_{m}\,\cdot\,0.4\,{}_{m}}\right)\cdot\left(\left(\frac{15\,{}_{m}}{25\,{}_{m}}\right)^{3}\,+\,3\cdot\left(\frac{15\,{}_{m}}{25\,{}_{m}}\right)\right)$$

8) Modulus of Elasticity of Wall Material given Deflection Formula

of Wall Material given Deflection Formula

Evaluate Formula

Evaluate Formula

Evaluate Formula

$$E = \left(\frac{1.5 \cdot w \cdot H}{\delta \cdot t}\right) \cdot \left(\left(\frac{H}{L}\right)^3 + \left(\frac{H}{L}\right)\right)$$

Example with Units

$$20.0145\, {\text{MPa}} \ = \left(\frac{1.5 \cdot 75\, {\text{kN}} \, \cdot 15\, {\text{m}}}{0.172\, {\text{m}} \, \cdot 0.4\, {\text{m}}}\right) \cdot \left(\left(\frac{15\, {\text{m}}}{25\, {\text{m}}}\right)^3 + \left(\frac{15\, {\text{m}}}{25\, {\text{m}}}\right)\right)$$

9) Wall Thickness given Deflection Formula 🕝

mess given benection Formula t

$$t = \left(\frac{1.5 \cdot w \cdot H}{E \cdot \delta}\right) \cdot \left(\left(\frac{H}{L}\right)^3 + \left(\frac{H}{L}\right)\right)$$

Example with Units

$$0.4003\,{}_{m} \; = \left(\frac{1.5\cdot75\,{}_{kN}\,\cdot\,15\,{}_{m}}{20\,{}_{MPa}\,\cdot\,0.172\,{}_{m}}\right)\cdot \left(\left(\frac{15\,{}_{m}}{25\,{}_{m}}\right)^{3} + \left(\frac{15\,{}_{m}}{25\,{}_{m}}\right)\right)$$

10) Wall Thickness given Deflection at Top due to Concentrated Load Formula

Formula

$$t = \left(\frac{4 \cdot P}{E \cdot \delta}\right) \cdot \left(\left(\frac{H}{L}\right)^3 + 0.75 \cdot \left(\frac{H}{L}\right)\right)$$

Example with Units

$$0.4_{\,\mathrm{m}} \, = \left(\frac{4 \cdot 516.51_{\,\mathrm{kN}}}{20_{\,\mathrm{MPa}} \cdot 0.172_{\,\mathrm{m}}}\right) \cdot \left(\left(\frac{15_{\,\mathrm{m}}}{25_{\,\mathrm{m}}}\right)^3 + 0.75 \cdot \left(\frac{15_{\,\mathrm{m}}}{25_{\,\mathrm{m}}}\right)\right)$$

11) Wall Thickness given Deflection at Top due to Fixed against Rotation Formula 🕝

Evaluate Formula C

Formula
$$t = \left(\frac{P}{E \cdot \delta}\right) \cdot \left(\left(\frac{H}{L}\right)^3 + 3 \cdot \left(\frac{H}{L}\right)\right)$$

Example with Units

$$0.3027_{\text{m}} = \left(\frac{516.51_{\text{kN}}}{20_{\text{MPa}} \cdot 0.172_{\text{m}}}\right) \cdot \left(\left(\frac{15_{\text{m}}}{25_{\text{m}}}\right)^{3} + 3 \cdot \left(\frac{15_{\text{m}}}{25_{\text{m}}}\right)\right)$$

Variables used in list of Load Distribution to Bents and Shear Walls Formulas above

- **E** Modulus of Elasticity of Wall Material (*Megapascal*)
- **H** Height of the Wall (Meter)
- L Length of Wall (Meter)
- P Concentrated Load on Wall (Kilonewton)
- t Wall Thickness (Meter)
- w Uniform Lateral Load (Kilonewton)
- δ Deflection of Wall (Meter)

Constants, Functions, Measurements used in list of Load Distribution to Bents and Shear Walls Formulas above

- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Pressure in Megapascal (MPa)
 Pressure Unit Conversion
- Measurement: Force in Kilonewton (kN)
 Force Unit Conversion

Download other Important Load Distribution PDFs

Important Load Distribution to Bents and Shear Walls Formulas

Try our Unique Visual Calculators

- 🎇 Percentage decrease 🗂
- HCF of three numbers

• Multiply fraction 🕝

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 5:06:04 AM UTC