Important Lifting Machines Formulas PDF

Formulas Examples with Units

List of 33

Evaluate Formula

Evaluate Formula 🦳

Important Lifting Machines Formulas

1) Machine Design Characteristics Formulas 🕝

1.1) Efficiency of Machine given Mechanical Advantage and Velocity Ratio Formula 🕝

FormulaExample $\eta = \frac{M_a}{V_i}$ $0.8333 = \frac{5}{6}$

1.2) Effort Required by Machine to Overcome Resistance to Get Work Done Formula 🕝

Formula	Example with Units	
$P = \frac{W}{M_a}$	$200 \text{ N} = \frac{1000 \text{ N}}{1000 \text{ N}}$	
	5	

1.3)) Frictional Effort Lost Formula 🕝	
Formula	Example with Units	Evaluate Formula 🕝
$F_e = P - \frac{W}{V_i}$	$33.3333N = 200N - \frac{1000N}{6}$	

1.4) Ideal Effort	given Load and veic	city Ratio Formula 🕚	
Formula	Example with Units		Evaluate Formula 🕝
$P_{o} = \frac{W}{V_{i}}$	$166.6667\mathrm{N} = \frac{1000\mathrm{N}}{6}$		
1.5) Ideal Load	given Velocity Ratio	and Effort Formula 🕝	
$\begin{tabular}{c} & \mbox{Formula} \\ \hline & \mbox{W}_i = \mbox{V}_i \cdot \mbox{P} \\ \hline \end{tabular}$	Example with Units $1200 \text{ N} = 6 \cdot 200 \text{ N}$		Evaluate Formula 👉

1.6) Load Lifted given Effort and Mechanical Advantage Formula	C	
	and the second s	

Formula	Example with Units
$W = M_a \cdot P$	$1000 \text{ N} = 5 \cdot 200 \text{ N}$

3.2) Efficiency of Screw Jack Formula 🕝	
Formula Example with Units	Evaluate Formula
$\eta = \frac{\tan\left(\psi\right)}{\tan\left(\psi + \theta\right)} \cdot 100 \qquad 0.8398 = \frac{\tan\left(12.9^{\circ}\right)}{\tan\left(12.9^{\circ} + 75^{\circ}\right)} \cdot 100$	
3.3) Efficiency of Worm Geared Screw Jack Formula 🕝	
FormulaExample $\eta = \frac{M_a}{V_i}$ $0.8333 = \frac{5}{6}$	Evaluate Formula 🕝
3.4) Torque Required while Load is Ascending in Screw Jack Form	iula 💽
FormulaExample with Units $T_{asc} = \frac{d_m}{2} \cdot W \cdot tan(\theta + \Phi)$ $2748.4519 N^*m = \frac{0.24 m}{2} \cdot 1000 N \cdot tan(75^\circ + 12.5^\circ)$	Evaluate Formula 🕝
3.5) Torque Required while Load is Descending in Screw Jack Forn	nula 🕝
Formula $T_{des} = \frac{d_{m}}{2} \cdot W \cdot tan(\theta - \Phi)$ $230.5179_{N^{*}m} = \frac{0.24_{m}}{2} \cdot 1000_{N} \cdot tan(75^{\circ} - 12.5^{\circ})$	Evaluate Formula
3.6) Velocity Ratio of Differential Screw Jack Formula	Evaluate Formula 🕝
Formula $V_{i} = \frac{2 \cdot \pi \cdot l}{p_{a} - p_{b}}$ $6.2832 = \frac{2 \cdot 3.1416 \cdot 12 \text{ m}}{34 \text{ m} - 22 \text{ m}}$	
3.7) Velocity Ratio of Simple Screw Jack Formula	Evaluate Formula
Formula Example with Units $V_{i} = \frac{2 \cdot \pi \cdot l}{P_{s}}$ 5.3856 = $\frac{2 \cdot 3.1416 \cdot 12 \text{ m}}{14 \text{ m}}$	
3.8) Velocity Ratio of Worm Geared Screw Jack Formula 🕝	
Formula Example with Units	Evaluate Formula 🕝
$V_{i} = \frac{2 \cdot \pi \cdot R_{w} \cdot T_{s}}{P_{s}} = 6.4851 = \frac{2 \cdot 3.1416 \cdot 0.85 \text{m} \cdot 17}{14 \text{m}}$	

3.9) Velocity Ratio of Worm Geared Screw Jack with Double Threaded Formula 🕝 👘

Formula	Example with Units
$V_{i} = \frac{2 \cdot \pi \cdot R_{w} \cdot T_{w}}{2 \cdot P_{s}}$	$6.1037 = \frac{2 \cdot 3.1416 \cdot 0.85 \mathrm{m} \cdot 32}{2 \cdot 14 \mathrm{m}}$

3.10) Velocity Ratio of Worm Geared Screw Jack with Multiple Threads Formula Evaluate Formula Formula Example with Units $V_{i} = \frac{2 \cdot \pi \cdot R_{w} \cdot T_{w}}{n \cdot P_{c}} \left[6.1037 = \frac{2 \cdot 3.1416 \cdot 0.85 \text{ m} \cdot 32}{2 \cdot 14 \text{ m}} \right]$ 4) Worm Wheel Formulas 🕝 4.1) Efficiency of Worm and Worm Wheel Formula Evaluate Formula Formula Example $\eta = \frac{M_a}{V_i} \qquad 0.8333 = \frac{5}{6}$ 4.2) Velocity Ratio of Worm and Worm Wheel Formula 🕝 Evaluate Formula Formula Example with Units $\left| \begin{array}{c} \mathbf{V}_{i} = \frac{\mathbf{D}_{m} \cdot \mathbf{T}_{w}}{2 \cdot \mathbf{R}_{d}} \right| \quad \left| \begin{array}{c} 6.8571 = \frac{0.15 \, \text{m} \cdot 32}{2 \cdot 0.35 \, \text{m}} \right| \end{array} \right|$

4.3) Velocity Ratio of Worm and Worm Wheel, if Worm has Multiple Threads Formula 🕝

Formula	Example with Units
$d_{w} \cdot T_{w}$	$6.8571 = 0.3 \text{ m} \cdot 32$
$\mathbf{v}_i = \frac{1}{2 \cdot \mathbf{n} \cdot \mathbf{R}_d}$	2 · 2 · 0.35 m

Evaluate Formula 🕝

Evaluate Formula

Evaluate Formula 🦳

Formula	Example with Units	
$V_i = \frac{d_w \cdot T_w}{4 \cdot R_d}$	$6.8571 = \frac{0.3\mathrm{m} \cdot 32}{4 \cdot 0.35\mathrm{m}}$	

Variables used in list of Lifting Machines Formulas above

- **D**_e Distance Moved Due to Effort (Meter)
- d_I Diameter of Larger Pulley (Meter)
- DI Distance Moved Due to Load (Meter)
- d_m Mean Diameter of Screw (Meter)
- D_m Minimum Diameter of Effort Wheel (Meter)
- **d**_s Diameter of Smaller Pulley (Meter)
- dw Diameter of Effort Wheel (Meter)
- Fe Frictional Effort Lost (Newton)
- I Length of Lever Arm (Meter)
- L_c Net Shortening of Chain (Meter)
- L_s Net Shortening of String (Meter)
- Ma Mechanical Advantage
- **n** Number of Threads
- P Effort (Newton)
- pa Pitch of Screw A (Meter)
- pb Pitch of Screw B (Meter)
- **P**_o Ideal Effort (Newton)
- Ps Pitch (Meter)
- R Radius of Pulley (Meter)
- r₁ Radius of Larger Pulley (Meter)
- r2 Radius of Smaller Pulley (Meter)
- Rd Radius of Load Drum (Meter)
- R_w Radius of Effort Wheel (Meter)
- T₁ Number of Teeth of Larger Pulley
- T₂ Number of Teeth of Smaller Pulley
- T_{asc} Torque Required While Load is Ascending (Newton Meter)
- T_{des} Torque Required While Load is Descending (Newton Meter)
- T_s Number of Teeth in Screw Shaft
- Tw Number of Teeth on Worm Wheel

Constants, Functions, Measurements used in list of Lifting Machines Formulas above

- constant(s): pi,
 3.14159265358979323846264338327950288
 Archimedes' constant
- Functions: tan, tan(Angle) The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Energy in Joule (J) Energy Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Torque in Newton Meter (N*m) Torque Unit Conversion

- V_i Velocity Ratio
- W Load (Newton)
- Wi Ideal Load (Newton)
- WI Work Done (Joule) •
- **η** Efficiency
- **θ** Angle of Friction (*Degree*)
- Φ Limiting Angle of Friction (Degree) •
- **W** Helix Angle (Degree)

Try our Unique Visual Calculators

- 🔀 Percentage increase 🕝
- 🎆 HCF calculator 🕝

Mixed fraction 🕝

Please SHARE this PDF with someone who needs it!

This PDF can be downloaded in these languages

English Spanish French German Russian Italian Portuguese Polish Dutch

9/18/2024 | 11:54:03 AM UTC

