### Important Limites d'Atterberg Formules PDF



**Formules Exemples** avec unités

#### Liste de 16

**Important Limites d'Atterberg Formules** 

#### 1) Angle de frottement interne pour le sol Formule 🕝



$$\phi = \arctan\left(\frac{F_s}{Fn}\right) \qquad \frac{\text{Exemple avec Unit\'es}}{40.2453^{\circ} = \arctan\left(\frac{48.5\,\text{N}}{57.3\,\text{N}}\right)}$$

#### 2) Coefficient de friction interne pour le sol Formule [7]





3) Force de cisaillement sur le plan lors du glissement sur le plan Formule 🕝 Évaluer la formule (

Évaluer la formule (

Évaluer la formule

$$F_{s} = (Fn \cdot tan\phi)$$

#### 4) Force normale sur un plan donné dans un sol sans cohésion Formule 🕝



Évaluer la formule 🕝

Formule Exemple avec Unités
$$Fn = \left(\frac{F_s}{\tan \varphi}\right) = \left(\frac{48.5 \text{ N}}{0.50}\right)$$

#### 5) Indice d'activité du sol Formule 🕝

Formule

Formule Exemple 
$$A_{c} = \left(\frac{I_{p}}{\mu}\right) \qquad 6 = \left(\frac{1.2}{0.20}\right)$$

#### Évaluer la formule 🕝

#### 6) Indice de liquidité du sol Formule C

Formule

$$I_{l} = \frac{w - W_{p}}{I_{p}}$$

Exemple  $I_l = \frac{w - W_p}{I_n} \mid 0.4917 = \frac{1.79 - 1.20}{1.2}$ 

#### 7) Indice de plasticité du sol Formule 🕝

Exemple

Évaluer la formule (

 $I_p = W_l - W_p$  1.2 = 2.4 - 1.20

#### 8) Indice de plasticité du sol donné Indice d'activité Formule

Évaluer la formule (

Formule Exemple  $I_p = \left(A_c \cdot \mu\right) \qquad \boxed{1.2 = \left(6 \cdot 0.20\right)}$ 

#### 9) Indice de plasticité du sol donné Indice de liquidité Formule 🕝

 $I_p = \frac{w - W_p}{I_l}$  0.9833 =  $\frac{1.79 - 1.20}{0.6}$ 

Évaluer la formule 🕝

10) Indice de rétrécissement du sol Formule C

Formule

Exemple  $I_s = (W_p - W_s)$  1.07 = (1.20 - 0.13) Évaluer la formule

11) Limite de liquidité du sol compte tenu de l'indice de plasticité Formule 🕝

Formule Exemple  $W_l = I_p + W_p \qquad \boxed{2.4 = 1.2 + 1.20}$ 

Évaluer la formule 🕝

12) Limite de retrait du sol compte tenu de l'indice de retrait Formule 🕝

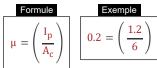
Formule Exemple  $W_{\rm S} = \left( \ W_{\rm p} - {\rm I}_{\rm S} \ \right) \qquad \boxed{ 0.13 = \left( \ 1.20 - 1.07 \ \right) }$ 

Évaluer la formule 🕝

13) Limite plastique du sol compte tenu de l'indice de plasticité Formule 🕝

Formule Exemple  $W_p = W_l - I_p \qquad \boxed{1.2 = 2.4 - 1.2}$ 

Évaluer la formule 🕝


14) Limite plastique du sol compte tenu de l'indice de retrait Formule C

Formule

Évaluer la formule 🕝

 $W_p = (I_s + W_s)$  1.2 = (1.07 + 0.13)

### 15) Pourcentage de sol plus fin que la taille de l'argile compte tenu de l'indice d'activité Formule 🕝



Évaluer la formule 🕝

Évaluer la formule 🕝

16) Teneur en humidité du sol compte tenu de l'indice de liquidité Formule 🗂



#### Variables utilisées dans la liste de Limites d'Atterberg Formules cidessus

- A<sub>c</sub> Indice d'activité
- F<sub>s</sub> Force de cisaillement sur le sol (Newton)
- Fn Force normale sur le sol (Newton)
- I<sub>I</sub> Indice de liquidité
- Ip Indice de plasticité
- Is Indice de rétrécissement
- P Force normale totale (Newton)
- tanφ Coefficient de frottement interne
- W Teneur en eau du sol
- W<sub>I</sub> Limite de liquidité
- W<sub>p</sub> Limite plastique
- Ws Limite de retrait
- µ Pourcentage de fraction d'argile
- Φ Angle de frottement interne (Degré)

# Constantes, fonctions, mesures utilisées dans la liste des Limites d'Atterberg Formules ci-dessus

- Les fonctions: arctan, arctan(Number)
   Les fonctions trigonométriques inverses sont généralement accompagnées du préfixe - arc.
   Mathématiquement, nous représentons arctan ou la fonction tangente inverse comme tan-1 x ou arctan(x).
- Les fonctions: ctan, ctan(Angle)
   La cotangente est une fonction trigonométrique définie comme le rapport du côté adjacent au côté opposé dans un triangle rectangle.
- Les fonctions: tan, tan(Angle)
   La tangente d'un angle est le rapport trigonométrique de la longueur du côté opposé à un angle à la longueur du côté adjacent à un angle dans un triangle rectangle.
- La mesure: Force in Newton (N)
   Force Conversion d'unité
- La mesure: Angle in Degré (°)
   Angle Conversion d'unité

#### Téléchargez d'autres PDF Important Ingénierie géotechnique

- Important Capacité portante des semelles filantes pour les sols C-Φ
   Formules
- Important Capacité portante d'un sol cohésif Formules
- Important Capacité portante d'un sol non cohésif Formules
- Important Capacité portante des sols Formules (\*)
- Important Capacité portante des sols : •
   analyse de Meyerhof Formules
- Important Analyse de la stabilité des fondations Formules
- Important Limites d'Atterberg
   Formules (\*)
- Important Capacité portante du sol : analyse de Terzaghi Formules
- Important Compactage du sol Formules
- Important Déménagement de la terre Formules
- Important Pression latérale pour sol cohésif et non cohésif Formules
- Important Profondeur minimale de fondation selon l'analyse de Rankine Formules

- Important Fondations sur pieux
   Formules
- Important Fabrication de grattoirs
   Formules
- Important Analyse des infiltrations
   Formules
- Important Analyse de stabilité des pentes à l'aide de la méthode Bishops Formules
- Important Analyse de stabilité des pentes à l'aide de la méthode Culman Formules
- Important Origine du sol et ses propriétés Formules
- Important Gravité spécifique du sol Formules (\*)
- Important Analyse de stabilité des pentes infinies dans le prisme Formules
- Important Contrôle des vibrations dans le dynamitage Formules
- Important Rapport de vide de l'échantillon de sol Formules
- Important Teneur en eau du sol et formules associées Formules

#### Essayez nos calculatrices visuelles uniques

- 🥻 Part de pourcentage 🗁
- 🛂 Fraction impropre 🗂

• PGCD de deux nombres

## Veuillez PARTAGER ce PDF avec quelqu'un qui en a besoin!

#### Ce PDF peut être téléchargé dans ces langues

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 4:44:41 AM UTC