Wichtige Formeln des Dodekaeders Formeln PDF

Formeln Beispiele mit Einheiten

Liste von 33

Wichtige Formeln des Dodekaeders Formeln

1) Fläche des Dodekaeders Formeln 🕝

1.1) Gesamtoberfläche des Dodekaeders Formel 🕝

Formel

$$25 + \left(10 \cdot \sqrt{5}\right) \cdot l_e^2$$

Beispiel mit Einheiten

TSA =
$$3 \cdot \sqrt{25 + (10 \cdot \sqrt{5})} \cdot l_e^2$$
 | $2064.5729 \, m^2 = 3 \cdot \sqrt{25 + (10 \cdot \sqrt{5})} \cdot 10 \, m^2$

1.2) Gesamtoberfläche des Dodekaeders bei gegebenem Gesichtsumfang Formel 🕝

$$TSA = \frac{3}{25} \cdot \sqrt{25 + \left(10 \cdot \sqrt{5}\right)} \cdot P_{Face}^{2}$$

Beispiel mit Einheiten

$$TSA = \frac{3}{25} \cdot \sqrt{25 + \left(10 \cdot \sqrt{5}\right)} \cdot P_{Face}^{2}$$

$$2064.5729 \, m^{2} = \frac{3}{25} \cdot \sqrt{25 + \left(10 \cdot \sqrt{5}\right)} \cdot 50 \, m^{2}$$

1.3) Gesamtoberfläche des Dodekaeders bei gegebenem Volumen Formel 🕝

Formel

$$TSA = 3 \cdot \sqrt{25 + \left(10 \cdot \sqrt{5}\right)} \cdot \left(\frac{4 \cdot V}{15 + \left(7 \cdot \sqrt{5}\right)}\right)^{\frac{2}{3}}$$

Beispiel mit Einheiten

$$2071.1918 \,\mathrm{m^2} \, = 3 \cdot \sqrt{25 + \left(10 \cdot \sqrt{5}\,\right)} \cdot \left(\frac{4 \cdot 7700 \,\mathrm{m^3}}{15 + \left(7 \cdot \sqrt{5}\,\right)}\right)^{\frac{2}{3}}$$

1.4) Gesichtsfläche des Dodekaeders Formel C

$$25 + \left(10 \cdot \sqrt{5}\right) \cdot 1^{-2}$$

Beispiel mit Einheiten

$$A_{Face} = \frac{1}{4} \cdot \sqrt{25 + \left(10 \cdot \sqrt{5}\right) \cdot l_e^2} \left[172.0477 \, m^2 = \frac{1}{4} \cdot \sqrt{25 + \left(10 \cdot \sqrt{5}\right)} \cdot 10 \, m^2 \right]$$

Formel auswerten 🕝

Formel auswerten

Formel auswerten [7]

Formel auswerten

1.5) Gesichtsfläche des Dodekaeders bei gegebenem Mittelkugelradius Formel 🕝

$$A_{Face} = \frac{1}{4} \cdot \sqrt{25 + \left(10 \cdot \sqrt{5}\right) \cdot \left(\frac{4 \cdot r_m}{3 + \sqrt{5}}\right)^2}$$

Formel auswerten 🕝

Formel auswerten

Formel auswerten

Beispiel mit Einheiten

$$169.6856 \,\mathrm{m^2} \,=\, \frac{1}{4} \cdot \sqrt{25 + \left(10 \cdot \sqrt{5}\,\right)} \cdot \left(\frac{4 \cdot 13 \,\mathrm{m}}{3 + \sqrt{5}}\right)^2$$

1.6) Seitenfläche des Dodekaeders Formel [7]

LSA =
$$\frac{5}{2} \cdot \sqrt{25 + (10 \cdot \sqrt{5}) \cdot l_e^2}$$
 $1720.4774 \, m^2 = \frac{5}{2} \cdot \sqrt{25 + (10 \cdot \sqrt{5}) \cdot 10 \, m^2}$

Beispiel mit Einheiten

$$\frac{1}{4}$$
 m² = $\frac{5}{2} \cdot \sqrt{25 + (10 \cdot \sqrt{5}) \cdot 10}$ m²

1.7) Seitenfläche des Dodekaeders bei gegebenem Umfangsradius Formel 🕝

LSA =
$$\frac{5}{2} \cdot \sqrt{25 + (10 \cdot \sqrt{5})} \cdot \left(\frac{4 \cdot r_c}{\sqrt{3} \cdot (1 + \sqrt{5})}\right)^2$$

Beispiel mit Einheiten

$$1717.3883 \, m^2 \, = \frac{5}{2} \cdot \sqrt{25 + \left(10 \cdot \sqrt{5}\right)} \cdot \left(\frac{4 \cdot 14 \, m}{\sqrt{3} \cdot \left(1 + \sqrt{5}\right)}\right)^2$$

1.8) Seitenfläche des Dodekaeders bei gegebener Gesamtfläche Formel 🕝

$$LSA = \frac{5}{6} \cdot TSA$$

Beispiel mit Einheiten

LSA =
$$\frac{5}{6} \cdot \text{TSA}$$
 $1750 \,\text{m}^2 = \frac{5}{6} \cdot 2100 \,\text{m}^2$

- 2) Diagonale des Dodekaeders Formeln 🕝
- 2.1) Gesichtsdiagonale des Dodekaeders Formel 🕝

Formel

Beispiel mit Einheiten

Formel auswerten

$$d_{Face} = \left(\frac{1+\sqrt{5}}{2}\right) \cdot l_e \qquad \qquad 16.1803\,\text{m} = \left(\frac{1+\sqrt{5}}{2}\right) \cdot 10\,\text{m}$$

2.2) Gesichtsdiagonale des Dodekaeders bei gegebener Gesamtoberfläche Formel 🕝

Formel auswerten 🦳

$$d_{Face} = \frac{1 + \sqrt{5}}{2} \cdot \sqrt{\frac{TSA}{3 \cdot \sqrt{25 + (10 \cdot \sqrt{5})}}}$$

Beispiel mit Einheite

$$16.3186 \,\mathrm{m} \, = \frac{1 + \sqrt{5}}{2} \cdot \sqrt{\frac{2100 \,\mathrm{m}^2}{3 \cdot \sqrt{25 + \left(10 \cdot \sqrt{5}\right)}}}$$

2.3) Gesichtsdiagonale des Dodekaeders mit gegebenem Insphere-Radius Formel 🕝

Formel auswerten [7]

Formel auswerten [7]

Formel auswerten

$$\mathbf{d}_{Face} = \left(1 + \sqrt{5}\right) \cdot \frac{\mathbf{r_i}}{\sqrt{\frac{25 + \left(11 \cdot \sqrt{5}\right)}{10}}} \qquad \mathbf{15.9839_m} = \left(1 + \sqrt{5}\right) \cdot \frac{\mathbf{11_m}}{\sqrt{\frac{25 + \left(11 \cdot \sqrt{5}\right)}{10}}}$$

2.4) Raumdiagonale des Dodekaeders Formel []

Formel

$$d_{Space} = \sqrt{3} \cdot \left(1 + \sqrt{5}\right) \cdot \frac{l_e}{2}$$

Beispiel mit Einheiten

$$d_{Space} = \sqrt{3} \cdot \left(1 + \sqrt{5}\right) \cdot \frac{l_e}{2}$$

$$28.0252_m = \sqrt{3} \cdot \left(1 + \sqrt{5}\right) \cdot \frac{10_m}{2}$$

2.5) Raumdiagonale des Dodekaeders bei gegebenem Umfang Formel C

Formel

$$d_{\text{Space}} = \sqrt{3} \cdot \left(1 + \sqrt{5}\right) \cdot \frac{P}{60}$$

Beispiel mit Einheiten

$$d_{Space} = \sqrt{3} \cdot \left(1 + \sqrt{5}\right) \cdot \frac{P}{60} \left| \quad 28.0252_{\,m} \right. = \sqrt{3} \cdot \left(1 + \sqrt{5}\right) \cdot \frac{300_{\,m}}{60}$$

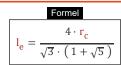
2.6) Raumdiagonale des Dodekaeders bei gegebener Seitenfläche Formel 🕝

Formel auswerten [

$$d_{\text{Space}} = \frac{\sqrt{3} \cdot (1 + \sqrt{5})}{2} \cdot \underbrace{\frac{2 \cdot \text{LSA}}{5 \cdot \sqrt{25 + (10 \cdot \sqrt{5})}}}$$

$$28.2646 m = \frac{\sqrt{3} \cdot (1 + \sqrt{5})}{2} \cdot \sqrt{\frac{2 \cdot 1750 m^2}{5 \cdot \sqrt{25 + (10 \cdot \sqrt{5})}}}$$

3) Kantenlänge des Dodekaeders Formeln [

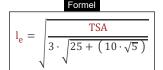

3.1) Kantenlänge des Dodekaeders bei gegebenem Insphere-Radius Formel 🦵

Formel Beispiel mit Einheiten
$$l_e = \frac{2 \cdot r_i}{\sqrt{\frac{25 + \left(11 \cdot \sqrt{5}\right)}{10}}} \quad 9.8786 \, \text{m} = \frac{2 \cdot 11 \, \text{m}}{\sqrt{\frac{25 + \left(11 \cdot \sqrt{5}\right)}{10}}}$$

Formel auswerten

3.2) Kantenlänge des Dodekaeders bei gegebenem Umfangsradius Formel 🕝

Formel Beispiel mit Einheiten
$$l_e = \frac{4 \cdot r_c}{\sqrt{3} \cdot \left(1 + \sqrt{5}\;\right)} \qquad 9.991_m = \frac{4 \cdot 14_m}{\sqrt{3} \cdot \left(1 + \sqrt{5}\;\right)}$$


Formel auswerten [7]

Formel auswerten (

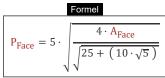
3.3) Kantenlänge des Dodekaeders bei gegebenem Volumen Formel 🕝

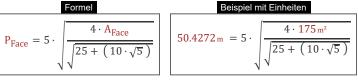
$$\mathbf{l_e} = \left(\frac{4 \cdot \mathbf{V}}{15 + (7 \cdot \sqrt{5})}\right)^{\frac{1}{3}}$$

3.4) Kantenlänge des Dodekaeders bei gegebener Gesamtoberfläche Formel 🕝

Formel auswerten (

4) Umfang des Dodekaeders Formeln 🕝


4.1) Gesichtsumfang des Dodekaeders Formel



Formel auswerten

4.2) Gesichtsumfang des Dodekaeders bei gegebener Gesichtsfläche Formel C

Formel auswerten [

4.3) Umfang des Dodekaeders Formel

Formel auswerten

4.4) Umfang des Dodekaeders bei gegebenem Zirkumsphärenradius Formel 🕝

Beispiel mit Einheiten

Formel auswerten 🕝

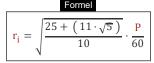
$$P = \frac{120 \cdot r_c}{\sqrt{3} \cdot \left(1 + \sqrt{5}\right)}$$

 $| P = \frac{120 \cdot r_c}{\sqrt{3} \cdot (1 + \sqrt{5})} | 299.7306_m = \frac{120 \cdot 14_m}{\sqrt{3} \cdot (1 + \sqrt{5})} |$

4.5) Umfang des Dodekaeders bei gegebener Gesamtoberfläche Formel 🕝 Beispiel mit Einheiten

$$P = 30 \cdot \sqrt{\frac{\text{TSA}}{3 \cdot \sqrt{25 + (10 \cdot \sqrt{5})}}} \qquad 302.563 \,\text{m} = 30 \cdot \sqrt{\frac{2100 \,\text{m}^2}{3 \cdot \sqrt{25 + (10 \cdot \sqrt{5})}}}$$

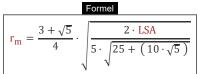
5) Radius des Dodekaeders Formeln [c]


5.1) Insphere Radius des Dodekaeders Formel C

$$r_{i} = \sqrt{\frac{25 + \left(11 \cdot \sqrt{5}\right)}{10} \cdot \frac{l_{e}}{2}}$$

$$r_{i} = \sqrt{\frac{25 + \left(11 \cdot \sqrt{5}\,\right)}{10} \cdot \frac{l_{e}}{2}} \quad \boxed{ 11.1352_{m} = \sqrt{\frac{25 + \left(11 \cdot \sqrt{5}\,\right)}{10} \cdot \frac{10_{m}}{2}} }$$

Formel auswerten


5.2) Insphere Radius des Dodekaeders bei gegebenem Umfang Formel 🕝

Formel Beispiel mit Einheiten
$$r_{i} = \sqrt{\frac{25 + \left(11 \cdot \sqrt{5}\right)}{10}} \cdot \frac{P}{60} \qquad 11.1352_{m} = \sqrt{\frac{25 + \left(11 \cdot \sqrt{5}\right)}{10}} \cdot \frac{300_{m}}{60}$$

5.3) Mittelkugelradius des Dodekaeders bei gegebener lateraler Oberfläche Formel 🕝

Formel Beispiel mit Einheiten
$$r_{m} = \frac{3+\sqrt{5}}{4} \cdot \sqrt{\frac{2 \cdot LSA}{5 \cdot \sqrt{25+\left(10 \cdot \sqrt{5}\right)}}}$$

$$13.202_{m} = \frac{3+\sqrt{5}}{4} \cdot \sqrt{\frac{2 \cdot 1750_{m^{2}}}{5 \cdot \sqrt{25+\left(10 \cdot \sqrt{5}\right)}}}$$

Formel auswerten

5.4) Mittelsphärenradius des Dodekaeders Formel C

$$r_{\rm m} = \frac{3 + \sqrt{5}}{4} \cdot l_{\rm e}$$

Formel Beispiel mit Einheiten
$$r_{m} = \frac{3+\sqrt{5}}{4} \cdot l_{e} \qquad 13.0902 \, \text{m} = \frac{3+\sqrt{5}}{4} \cdot 10 \, \text{m}$$

5.5) Umfangsradius des Dodekaeders Formel C

$$r_c = \sqrt{3} \cdot \left(1 + \sqrt{5}\,\right) \cdot \frac{l_e}{4}$$

$$\boxed{ r_c = \sqrt{3} \cdot \left(1 + \sqrt{5} \right) \cdot \frac{l_e}{4} } \boxed{ 14.0126_m = \sqrt{3} \cdot \left(1 + \sqrt{5} \right) \cdot \frac{10_m}{4} }$$

5.6) Umfangsradius des Dodekaeders bei gegebener Gesamtoberfläche Formel 🕝

Formel auswerten 🕝

$$r_{c} = \sqrt{3} \cdot \frac{1 + \sqrt{5}}{4} \cdot \sqrt{\frac{\text{TSA}}{3 \cdot \sqrt{25 + (10 \cdot \sqrt{5})}}}$$

Beispiel mit Einheiter

$$14.1323 \,\mathrm{m} = \sqrt{3} \cdot \frac{1 + \sqrt{5}}{4} \cdot \sqrt{\frac{2100 \,\mathrm{m}^2}{3 \cdot \sqrt{25 + (10 \cdot \sqrt{5})}}}$$

6) Volumen des Dodekaeders Formeln [c]

6.1) Volumen des Dodekaeders Formel 🕝

Formel auswerten

$$V = \frac{\left(15 + \left(7 \cdot \sqrt{5}\right)\right) \cdot l_e^3}{4}$$

6.2) Volumen des Dodekaeders bei gegebenem Umfang Formel 🕝

$$V = \frac{1}{4} \cdot \left(15 + \left(7 \cdot \sqrt{5}\right)\right) \cdot \left(\frac{P}{30}\right)^3$$

Formel auswerten

Beispiel mit Einheiten

$$7663.119 \,\mathrm{m}^{_3} \,=\, \frac{1}{4} \cdot \left(\,15 + \left(\,7 \cdot \sqrt{5}\,\,\right)\,\right) \cdot \left(\,\frac{300 \,\mathrm{m}}{30}\,\right)^{_3}$$

6.3) Volumen des Dodekaeders bei gegebenem Umfangsradius Formel 🗂

 $V = \frac{1}{4} \cdot \left(15 + \left(7 \cdot \sqrt{5}\right)\right) \cdot \left(\frac{4 \cdot r_{c}}{\sqrt{3} \cdot \left(1 + \sqrt{5}\right)}\right)$

Beispiel mit Einheiten

$$7642.4896 \,\mathrm{m}^{3} \, = \, \frac{1}{4} \cdot \left(\, 15 + \left(\, 7 \cdot \sqrt{5} \, \right) \, \right) \cdot \left(\frac{4 \cdot 14 \,\mathrm{m}}{\sqrt{3} \cdot \left(\, 1 + \sqrt{5} \, \right)} \right)^{3}$$

Formel auswerten (

Formel

$$V = \frac{1}{4} \cdot \left(15 + \left(7 \cdot \sqrt{5}\right)\right) \cdot \left(\frac{2 \cdot LSA}{5 \cdot \sqrt{25 + \left(10 \cdot \sqrt{5}\right)}}\right)^{\frac{3}{2}}$$

Beispiel mit Einheiten

$$7861.2061 \,\mathrm{m}^{_3} \, = \frac{1}{4} \cdot \left(15 + \left(7 \cdot \sqrt{5}\right)\right) \cdot \left(\frac{2 \cdot 1750 \,\mathrm{m}^{_2}}{5 \cdot \sqrt{25 + \left(10 \cdot \sqrt{5}\right)}}\right)^{\frac{3}{2}}$$

In der Liste von Wichtige Formeln des Dodekaeders oben verwendete Variablen

- A_{Face} Flächenfläche des Dodekaeders (Quadratmeter)
- d_{Face} Gesichtsdiagonale des Dodekaeders (Meter)
- d_{Space} Raumdiagonale des Dodekaeders (Meter)
- Ie Kantenlänge des Dodekaeders (Meter)
- LSA Seitenfläche des Dodekaeders (Quadratmeter)
- P Umfang des Dodekaeders (Meter)
- P_{Face} Gesichtsumfang des Dodekaeders (Meter)
- r_c Umfangsradius des Dodekaeders (Meter)
- ri Insphere Radius des Dodekaeders (Meter)
- r_m Mittelsphärenradius des Dodekaeders (Meter)
- TSA Gesamtoberfläche des Dodekaeders (Quadratmeter)
- V Volumen des Dodekaeders (Kubikmeter)

Konstanten, Funktionen, Messungen, die in der Liste von Wichtige Formeln des Dodekaeders oben verwendet werden

- Funktionen: sqrt, sqrt(Number)
 Eine Quadratwurzelfunktion ist eine Funktion, die eine nicht negative Zahl als Eingabe verwendet und die Quadratwurzel der gegebenen Eingabezahl zurückgibt.
- Messung: Länge in Meter (m)
 Länge Einheitenumrechnung []
- Messung: Volumen in Kubikmeter (m³)
 Volumen Einheitenumrechnung
- Messung: Bereich in Quadratmeter (m²)
 Bereich Einheitenumrechnung

Laden Sie andere Wichtig Platonische Festkörper-PDFs herunter

- Wichtig Würfel Formeln
- Wichtig Dodekaeder Formeln
- Wichtig Ikosaeder Formeln
- Wichtig Oktaeder Formeln 🕝
- Wichtig Tetraeder Formeln

Probieren Sie unsere einzigartigen visuellen Rechner aus

• KGV von zwei zahlen

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 1:24:00 PM UTC