Importante Spessore del design della gonna Formule **PDF**

Formule Esempi con unità

Lista di 16

Importante Spessore del design della gonna **Formule**

1) Braccio di momento per il peso minimo della nave Formula 🕝

Esempio con Unità

 $R = 0.42 \cdot D_{ob}$

 $519.54 \, \text{mm} = 0.42 \cdot 1237 \, \text{mm}$

2) Carico del vento che agisce sulla parte inferiore della nave Formula 🕝

 $P_{lw} = k_1 \cdot k_{coefficient} \cdot p_1 \cdot h_1 \cdot D_o$ $69.552 \, \text{N} = 0.69 \cdot 4 \cdot 20 \, \text{N/m}^2 \cdot 2.1 \, \text{m} \cdot 0.6 \, \text{m}$

Esempio con Unità

Valutare la formula 🕝

Valutare la formula

3) Carico del vento che agisce sulla parte superiore della nave Formula 🦵

Formula

Valutare la formula

 $P_{uw} = k_1 \cdot k_{coefficient} \cdot p_2 \cdot h_2 \cdot D_o \mid 119.8944 \text{ N} = 0.69 \cdot 4 \cdot 40 \text{ N/m}^2 \cdot 1.81 \text{ m} \cdot 0.6 \text{ m}$

4) Carico di compressione totale sull'anello di base Formula 🕝

Formula

Valutare la formula 🦳

 $F_{b} = \left(\left(\frac{4 \cdot M_{\text{max}}}{\left(\pi \right) \cdot \left(D_{\text{sk}} \right)^{2}} \right) + \left(\frac{\Sigma W}{\pi \cdot D_{\text{sk}}} \right) \right)$

$$0.8001 \, \text{N} \, = \left(\left(\frac{4 \cdot 13000000 \, \text{N*mm}}{\left(\, 3.1416 \, \right) \cdot \left(\, 19893.55 \, \text{mm} \, \right)^{\, 2}} \right) + \left(\frac{50000 \, \text{N}}{3.1416 \cdot 19893.55 \, \text{mm}} \right) \right)$$

5) Larghezza minima dell'anello di base Formula 🕝

 $L_{b} = \frac{F_{b}}{f_{c}} \left| 12.6525 \,\text{mm} \right| = \frac{28 \,\text{N}}{2.213 \,\text{N/mm}^{2}}$

Valutare la formula 🦳

6) Massima sollecitazione di flessione nella piastra dell'anello di base Formula 🕝

Formula Esempio con Unità
$$f_{max} = \frac{6 \cdot M_{max}}{b \cdot t_*}^2 \qquad \qquad 60.9375 \, \text{N/mm}^2 = \frac{6 \cdot 13000000 \, \text{N*mm}}{200 \, \text{nm} \cdot 80 \, \text{mm}}^2$$

Valutare la formula 🦳

Valutare la formula 🦳

Valutare la formula

7) Massimo sforzo di trazione Formula 🕝

 $f_{\text{tensile}} = f_{\text{sb}} - f_{\text{d}}$ 119.17 N/mm² = 141.67 N/mm² - 22.5 N/mm²

Valutare la formula (Esempio con Unità

8) Momento flettente massimo nella piastra portante all'interno della sedia Formula 🕝

Valutare la formula (Formula Esempio con Unità $Maximum_{BM} = \frac{P_{bolt} \cdot b_{spacing}}{8}$ 2.3E+6N*mm = $\frac{70000 \text{ N} \cdot 260 \text{ mm}}{8}$

9) Momento massimo del vento per imbarcazioni con altezza totale superiore a 20 m Formula

Formula $M_{w} = P_{lw} \cdot \left(\frac{h_{1}}{2}\right) + P_{uw} \cdot \left(h_{1} + \left(\frac{h_{2}}{2}\right)\right)$

Esempio con Unità
$$4.3E + 8 \, \text{N*mm} \ = \ 67 \, \text{N} \cdot \left(\frac{2.1 \, \text{m}}{2} \right) + \ 119 \, \text{N} \cdot \left(\ 2.1 \, \text{m} \ + \left(\frac{1.81 \, \text{m}}{2} \right) \right)$$

10) Momento massimo del vento per navi di altezza totale inferiore a 20 m Formula 🕝 Valutare la formula

Formula $M_{\rm w} = P_{\rm lw} \cdot \left(\frac{\rm H}{2}\right)$ $5E + 8 \, {\rm N*mm} = 67 \, {\rm N} \cdot \left(\frac{15 \, {\rm m}}{2}\right)$

11) Pressione minima del vento sull'imbarcazione Formula 🕝

Formula Esempio con Unità $p_{w} = 0.05 \cdot \left(\left. V_{w} \right)^{2} \right| \left[744.2 \, \text{N/m}^{2} \, = 0.05 \cdot \left(\left. 122 \, \text{km/h} \right. \right)^{2} \right]$

12) Sforzo di flessione assiale dovuto al carico del vento alla base della nave Formula 🕝 Valutare la formula 🕝

Esempio con Unità $\mid f_{wb} = \frac{4 \cdot M_w}{\pi \cdot \left(\mid_{D_{elv}} \right)^2 \cdot t_{elv}} \mid \mid 0.001 \, \text{N/mm}^2 = \frac{4 \cdot 370440000 \, \text{N*mm}}{3.1416 \cdot \left(\mid_{19893.55 \, \text{mm}} \mid_{0.001 \, \text{N/mm}} \right)^2 \cdot 1.18 \, \text{mm} }$

Esempio con Unità

Valutare la formula 🕝

$$f_{d} = \frac{\Sigma W}{\pi \cdot D_{sk} \cdot t_{sk}} \qquad 0.6$$

 $0.678\,\text{N/mm}^2 = \frac{}{3.1416\cdot 19893.55\,\text{mm}\,\cdot 1.18\,\text{mm}}$

14) Spessore della gonna nel vaso Formula 🕝

Formula

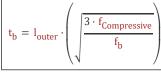
 $4 \cdot 370440000 \, \text{N*mm}$ $1.18 \, \text{mm} = \frac{}{3.1416 \cdot \left(19893.55 \, \text{mm}\right)^{2} \cdot 1.01 \, \text{N/mm}^{2}}$ Valutare la formula 🕝

Valutare la formula 🕝

15) Spessore della piastra portante all'interno della sedia Formula 🕝

Formula

Esempio con Unità


$$1.1621 \, \text{mm} = \sqrt{\frac{6 \cdot 2000546 \, \text{N*mm}}{\left(501 \, \text{mm} - 400 \, \text{mm}\right) \cdot 88 \, \text{N/mm}^2}}$$

16) Spessore della piastra portante di base Formula C

Formula

Esempio con Unità

Valutare la formula 🕝

Variabili utilizzate nell'elenco di Spessore del design della gonna Formule sopra

- b Lunghezza circonferenziale della piastra di appoggio (Millimetro)
- b_{spacing} Spaziatura all'interno delle sedie (Millimetro)
- d_{bh} Diametro del foro del bullone nella piastra del cuscinetto (Millimetro)
- **D** Diametro esterno della nave (metro)
- D_{ob} Diametro esterno della piastra del cuscinetto (Millimetro)
- **D**_{sk} Diametro medio della gonna (*Millimetro*)
- f_{all} Sollecitazione ammissibile nel materiale del bullone (Newton per millimetro quadrato)
- f_b Sforzo di flessione ammissibile (Newton per millimetro quadrato)
- F_b Carico di compressione totale all'anello di base (Newton)
- f_c Sollecitazione in piastra portante e fondazione in calcestruzzo (Newton per millimetro quadrato)
- f_{Compressive} Massimo sforzo di compressione (Newton per millimetro quadrato)
- f_d Sforzo di compressione dovuto alla forza (Newton per millimetro quadrato)
- f_{max} Massima sollecitazione di flessione nella piastra dell'anello di base (Newton per millimetro quadrato)
- f_{sb} Stress dovuto al momento flettente (Newton per millimetro quadrato)
- f_{tensile} Massimo sforzo di trazione (Newton per millimetro quadrato)
- f_{wb} Sollecitazione di flessione assiale alla base del vaso (Newton per millimetro quadrato)
- **H** Altezza totale della nave (metro)
- h₁ Altezza della parte inferiore della nave (metro)
- h₂ Altezza della parte superiore della nave (metro)

Costanti, funzioni, misure utilizzate nell'elenco di Spessore del design della gonna Formule sopra

- costante(i): pi,
 3.14159265358979323846264338327950288
 Costante di Archimede
- Funzioni: sqrt, sqrt(Number)
 Una funzione radice quadrata è una funzione che accetta un numero non negativo come input e restituisce la radice quadrata del numero di input specificato.
- Misurazione: Lunghezza in Millimetro (mm), metro (m)
 Lunghezza Conversione di unità
- Misurazione: Pressione in Newton / metro quadro (N/m²)
 Pressione Conversione di unità
- Misurazione: Velocità in Chilometro / ora (km/h)
 Velocità Conversione di unità
- Misurazione: Forza in Newton (N)
 Forza Conversione di unità
- Misurazione: Momento di forza in Newton Millimetro (N*mm)
- Momento di forza Conversione di unità

 Misurazione: Momento flettente in Newton
 - Millimetro (N*mm)

 Momento flettente Conversione di unità
- Misurazione: Fatica in Newton per millimetro quadrato (N/mm²)

Fatica Conversione di unità

- k₁ Coefficiente dipendente dal fattore di forma
- k_{coefficient} Periodo del coefficiente di un ciclo di vibrazione
- L_b Larghezza minima dell'anello di base (Millimetro)
- I_{outer} Differenza raggio esterno della piastra del cuscinetto e della gonna (Millimetro)
- M_{max} Momento flettente massimo (Newton Millimetro)
- M_w Momento massimo del vento (Newton Millimetro)
- Maximum_{BM} Momento flettente massimo nella piastra di appoggio (Newton Millimetro)
- p₁ Pressione del vento che agisce sulla parte inferiore della nave (Newton / metro quadro)
- p₂ Pressione del vento che agisce sulla parte superiore della nave (Newton / metro quadro)
- P_{bolt} Carica su ogni bullone (Newton)
- P_{Iw} Carico del vento che agisce sulla parte inferiore della nave (Newton)
- P_{uw} Carico del vento che agisce sulla parte superiore della nave (Newton)
- p_w Minima pressione del vento (Newton / metro quadro)
- R Braccio di momento per il peso minimo della nave (Millimetro)
- t_b Spessore della piastra portante di base (Millimetro)
- t_{bp} Spessore della piastra portante all'interno della sedia (Millimetro)
- $\mathbf{t_{sk}}$ Spessore della gonna (Millimetro)
- t_{skirt} Spessore della gonna nel vaso (Millimetro)
- V_w Velocità massima del vento (Chilometro / ora)
- W_{bp} Larghezza della piastra del cuscinetto (Millimetro)
- ΣW Peso totale della nave (Newton)

Scarica altri PDF Importante Supporti per navi

- di ancoraggio Formule
- gonna Formule 🕝
- Importante Progettazione del bullone
 Importante Supporto per capocorda o staffa Formule
- Importante Spessore del design della Importante Supporto sella Formule

Prova i nostri calcolatori visivi unici

- M Percentuale rovescio
- Calcolatore mcd

Frazione semplice 🗂

Per favore CONDIVIDI questo PDF con qualcuno che ne ha bisogno!

Questo PDF può essere scaricato in queste lingue

English Spanish French German Russian Italian Portuguese Polish Dutch

7/9/2024 | 4:24:34 AM UTC