Wichtig Niederschlag Formeln PDF

Formeln Beispiele mit Einheiten

Liste von 19

Wichtig Niederschlag Formeln

1) Dredge- oder Burge-Formel Formel

Beispiel mit Einheiten

$$Q_{p} = 19.6 \cdot \frac{A_{catchment}}{\left(L_{b}\right)^{\frac{2}{3}}}$$

$$Q_{p} = 19.6 \cdot \frac{A_{catchment}}{\left(L_{b}\right)^{\frac{2}{3}}} = 4.0601 \, \text{m}^{3}/\text{s} = 19.6 \cdot \frac{2.0 \, \text{m}^{2}}{\left(30 \, \text{m}\right)^{\frac{2}{3}}}$$

2) Gesamtabfluss über Einzugsgebiet Formel

Formel

Formel auswerten

Formel auswerten

$$Q_V = S_r + I + B + C$$

 $19.11 \,\mathrm{m}^3 = 0.05 \,\mathrm{m}^3/\mathrm{s} + 2 \,\mathrm{m}^3/\mathrm{s} + 16.96 \,\mathrm{m}^3/\mathrm{s} + 100 \,\mathrm{mm}$

3) Korrekturverhältnis im Test auf Konsistenz der Aufzeichnung Formel 🕝

Formel auswerten [7]

4) Niederschlagshöhe bei gegebener Niederschlagsmenge Formel 🗂

Beispiel mit Einheiten

5) Niederschlagsmenge Formel

Formel

Beispiel mit Einheiten

Formel auswerten 🕝

 $V = A \cdot d$

 $50 \, \text{m}^3 = 25 \, \text{m}^2 \cdot 20 \, \text{mm}$

6) Maximale Beziehung zwischen Intensität, Dauer und Frequenz Formeln

6.1) Dauer mit maximaler Intensität Formel

Formel

Formel Beispiel mit Einheiten
$$D = \left(\left(K \cdot \frac{T_r^x}{i_{max}} \right) - a^n \right)^{\frac{1}{n}}$$

$$3.0121_h = \left(\left(4 \cdot \frac{150^{1.5}}{266.794_{cm/h}} \right) - 0.6^3 \right)^{\frac{1}{3}}$$

Formel auswerten

Formel auswerten

Formel auswerten

6.2) Maximale Intensität in allgemeiner Form Formel

Formel Beispiel mit Einheiten
$$i_{max} = \frac{K \cdot T_r^x}{\left(D + a\right)^n} \qquad 266.794 \text{ cm/h} = \frac{4 \cdot 150^{1.5}}{\left(2.42 \text{ h} + 0.6\right)^3}$$

6.3) Rückgabefrist bei maximaler Intensität Formel []

Formel

T_r =
$$\left(\frac{i_{max} \cdot (D + a)^n}{K}\right)^{\frac{1}{x}}$$
 150 = $\left(\frac{266.794 \text{ cm/h} \cdot (2.42 \text{ h} + 0.6)^3}{4}\right)^{\frac{1}{1.5}}$

7) Niederschlagsmessung Formeln (?)

7.1) Radarmessung des Niederschlags Formeln 🕝

7.1.1) Niederschlagsintensität bei gegebenem Radarechofaktor Formel

 $i = \left(\frac{Z}{200}\right)^{\frac{1}{1.6}} \qquad 1.6 \, \text{mm/h} = \left(\frac{424.25}{200}\right)^{\frac{1}{1.6}}$

7.1.2) Radarechofaktor mit Intensität Formel [

Beispiel mit Einheiten $Z = 200 \cdot i^{1.6}$ $424.2501 = 200 \cdot 1.6 \,\text{mm/h}^{1.6}$

Formel auswerten

7.1.3) Radarmessung des Niederschlags Formel C

 $P_r = \frac{C_{radar} \cdot Z}{c^2}$ $2.1212 = \frac{2.00 \cdot 424.25}{20000 \, mm^2}$

8) Aufbereitung von Daten Formeln 🕝

8.1.1) Korrigierte Steigung der Doppelmassenkurve Formel 🕝

 $M_{c} = \frac{P_{cx} \cdot M_{a}}{P_{x}}$ $1.2 = \frac{16 \, \text{mm} \cdot 0.9}{12 \, \text{mm}}$

Formel auswerten

8.1.2) Korrigierter Niederschlag zu jedem Zeitpunkt an Station 'X' Formel 🕝

 $P_{cx} = P_x \cdot \frac{M_c}{M_a}$ $16_{mm} = 12_{mm} \cdot \frac{1.2}{0.9}$

Formel auswerten 🦳


8.1.3) Ursprünglich aufgezeichneter Niederschlag mit korrigiertem Niederschlag zu einem beliebigen Zeitraum Formel

Formel
$$P_{x} = \frac{P_{cx} \cdot M_{a}}{M}$$

 $P_{x} = \frac{P_{cx} \cdot M_{a}}{M_{c}}$ $12 \, \text{mm} = \frac{16 \, \text{mm} \cdot 0.9}{1.2}$

Formel auswerten

8.1.4) Ursprüngliche Steigung der Doppelmassenkurve bei korrigiertem Niederschlag Formel

Formel auswerten

9) Wahrscheinlicher maximaler Niederschlag (PMP) Formeln 🕝

9.1) Dauer für extreme Niederschlagstiefe Formel 🕝

Formel
$$D = \left(\frac{P_m}{42.16}\right)^{\frac{1}{0.475}}$$

Beispiel mit Einheiter $D = \left(\frac{P_{m}}{42.16}\right)^{\frac{1}{0.475}} \left| \quad 2.42_{h} = \left(\frac{641.52_{mm}}{42.16}\right)^{\frac{1}{0.475}} \right|$ Formel auswerten

9.2) Extreme Regentiefe Formel

Formel auswerten 🕝

Formel Beispiel mit Einheiten $P_{m} = 42.16 \cdot D^{0.475} \qquad \boxed{ 641.524_{mm} = 42.16 \cdot 2.42_{h}^{0.475} }$

9.3) Statistischer Ansatz von PMP unter Verwendung der Chow-Gleichung Formel 🕝

Formel auswerten 🕝

10) Regenmesser-Netzwerk Formeln 🕝

10.1) Optimale Anzahl von Regenmesserstationen Formel

Formel

Formel auswerten

In der Liste von Niederschlag Formeln oben verwendete Variablen

- a Koeffizient a
- A Fläche mit angesammeltem Regen (Quadratmeter)
- A_{catchment} Einzugsgebiet (Quadratmeter)
- **B** Basisfluss (Kubikmeter pro Sekunde)
- C Kanalniederschlag (Millimeter)
- C_{radar} Eine Konstante
- C_v Variationskoeffizient des Niederschlags
- C.R Korrekturverhältnis
- d Niederschlagsmenge (Millimeter)
- D Dauer des übermäßigen Niederschlags in Stunden (Stunde)
- E Zulässiger Fehlergrad
- i Intensität des Niederschlags (Millimeter / Stunde)
- I Interflow (Kubikmeter pro Sekunde)
- Imax Maximale Intensität (Zentimeter pro Stunde)
- K Konstante K
- K₂ Frequenzfaktor
- L_h Länge des Beckens (Meter)
- M_a Ursprüngliche Steigung der Doppelmassenkurve
- M_c Korrigierte Steigung der Doppelmassenkurve
- n Konstante n
- N Optimale Anzahl von Regenmessstationen
- P Mittlerer Niederschlag der Jahreshöchstwerte (Millimeter)
- P_{cx} Korrigierte Niederschlagsmenge (Millimeter)
- P_m Extreme Niederschlagstiefe (Millimeter)
- P_r Durchschnittliche Echoleistung
- P_X Original aufgezeichneter Niederschlag (Millimeter)
- PMP Wahrscheinlicher maximaler Niederschlag (Millimeter)
- **Q**_p Spitzenentladung (Kubikmeter pro Sekunde)

Konstanten, Funktionen, Messungen, die in der Liste von Niederschlag Formeln oben verwendet werden

- Messung: Länge in Meter (m), Millimeter (mm)
 Länge Einheitenumrechnung
- Messung: Zeit in Stunde (h)

 Zeit Einheitenumrechnung
- Messung: Volumen in Kubikmeter (m³)
 Volumen Einheitenumrechnung
- Messung: Bereich in Quadratmeter (m²)
 Bereich Einheitenumrechnung
- Messung: Geschwindigkeit in Zentimeter pro Stunde (cm/h), Millimeter / Stunde (mm/h)
 Geschwindigkeit Einheitenumrechnung
- Messung: Volumenstrom in Kubikmeter pro Sekunde (m³/s)
 Volumenstrom Einheitenumrechnung

- **Q**_V Abflussvolumen (Kubikmeter)
- r Abstand zum Zielvolumen (Millimeter)
- **S**_r Oberflächenabfluss (Kubikmeter pro Sekunde)
- T_r Zurückzukehren
- V Niederschlagsmenge (Kubikmeter)
- x Koeffizient x
- Z Radar-Echo-Faktor
- σ Standardabweichung

Laden Sie andere Wichtig Ingenieurhydrologie-PDFs herunter

- Wichtig Abstraktionen vom Niederschlag Formeln
- Wichtig Flächengeschwindigkeits- und Wichtig Messung der Ultraschallverfahren zur Stromflussmessung Formeln
- Wichtig Entladungsmessungen Formeln (
- Wichtig Indirekte Methoden der Stromflussmessung Formeln

- Wichtig Niederschlagsverluste Formeln (
- **Evapotranspiration Formeln**
- Wichtig Niederschlag Formeln
- Wichtig Stromflussmessung Formeln

Probieren Sie unsere einzigartigen visuellen Rechner aus

- Prozentualer Änderung
- KGV von zwei zahlen

Echter bruch

Bitte TEILEN Sie dieses PDF mit jemandem, der es braucht!

Dieses PDF kann in diesen Sprachen heruntergeladen werden

English Spanish French German Russian Italian Portuguese Polish Dutch

7/8/2024 | 7:35:55 AM UTC